
RD-R149 079 A PROGRAM MANAGER'S METHODOLOGY FOR DEVELOPING 1/2
STRUCTURED DESIGN IN EMBEDDED NEAPONS SYSTEMS(U) NAYRL
POSTGRADUATE SCHOOL MONTEREY CA J I RANSBOTHN ET AL.

UNCLASSIFIED DEC 83 F/G 912 N

mEEmohhomhomiI
mEmhhhEEEohhhE
smEEEohhEEEoh
EEEmohEohEEshhE

NAIOAL- - - - TAOA -- g - A ** *

1*2

;*,1

111.0 960-
I.0

1.25 4 I.

ICRCP ESLTO TS HR

fitO1111- uO .SANAD -6

IEEE,-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
* ELECT

APR 1 2 1984,

THESISD
A PROGRAM MANAGER'S METHODOLOGY
FOR DEVELOPING STRUCTURED DESIGN

IN EMBEDDED WEAPONS SYSTEMS

by

James I. Ransbotham, Jr.
and

Donald F. Moorehead, Jr.

a.. December 1983

C-,l
Thesis Advisor: Ronald W. Modes* LUJ

Approved for public release; distribution unlimited

84 04 12 066

.. 7

SECURITY CLASSIPICATION OF THIS PAGE (Vlkimi Dat Enered) ______________

RP MATAINPAGE READ INSTRUCTIONS
REPOR DOCMENTTIONBEFORE COMPLETING FORM

1. REPORT MN491ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (0d Su&Uff.) S. TYPE OF REPORT A PERIOD COVERED
A Program Manager's Methodology for Master's Thesis
Developing Structured Design in December 1983
Embedded Weapons Systems 4. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) S. CONTRACT OR GRANT NUMBER(*)

James I. Ransbotham, Jr.
and
Donald F. Moorehead, Jr.

9PERFORMING ORGANIZATION MNZ AND ADORESS 10. PROGRAM ELEMENT. PROJECT. TASKC

Naval Postgraduate School AE OKUI UBR

Monterey, California 93943

It. CONTROLLING OFFICE NAME AND ACDRESS 12. REPORT DATE

Naval Postgraduate School December, 1983
Monterey, California 93943 13. NUMBER OF PAGES

I&. MONITORING AGENCY NAME SAOSRESSI differeut fte Controling Office) 15. SECURITY CLASS. (of this eotsp)

UNCLASSIFIED

* 15a. OECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUJTION STATEMENT (of Oli. RepAff)

*Approved for public release; distribution unlimited

17. DISTRIBuTION STATEMENT (of Ifh. abetreet enteed In Block 26. it different bass Report)

If. SUPPLEUMTARY NOTES

19. KEY WORDS fCo.Mue so muwo. aide if uwsoemy nd idmffflp by block nmnes)

Methodology, Embedded Weapons Systems, Structured Design

77~~ 20. AftTRACI (COMeffa n revese Wd it*1 necemy snd Identify by Week mA..~)

$ This thesis demonstrates a methodology to be used by a Program
Manager to allow him to procedurally monitor the design develop-

* ment of an embedded weapons system. The methodology consists of a
unique combination of several software engineering strategies
integrated to form a powerful management tool. The primaryp: objective of the methodology is to provide an algorithmic pro-
cedure which stresses simplicity (Continued)

Do 1" 1473 EDITION OF NO14V 61 IS OBSOLETE
JN11 S/N 0102* If.014. 6601 1SECURITY CLASSIFICATION OF THIS PAGE (Mhen Doe Enisiec'

SMCUUTY CLAMICATION OF TIS PAGE (3h= DOM ESM"

ABSTRACT (Cont inued)

at all levels of abstraction. Further, the system must be
capable of generating good system specifications, good documenta-
tion, and fully understandable products. Sample products from
the implementation of the methodology on the HARPOON Shiboard
Command-Launch Control Set (HSCLCS) are provided for illustrative
purposes.

Accession For0 f

N-TI GRA&I tpc(
DTIC TABa
Unannounced F]
Just ificat io.

4*%

Dist ribiftion/

Availntllity Codes
Avail and/or

Dist Speci

%I .

1%

-6

.5,, N 0102- LF- 014- 6601

2 SECURITY CLASSIFICATION OF 11415 PAGa(~MA =74"WaE)

.. ... % 5 .'5*.5 . . 5

Approved for public release; i-stribution unlimited.

a Progzam Manager's .Eathodology
folDevploping structured DesigniEmbedded Weapons Systems

by

Jases I. Pansbotham Jr.
Lieutenant Commander, Unite& States Nay

B.S., Georgia Institute of Technology, 1972

and

Donald F. Mooreheall Jr.
Lieutenant Commands: Uralel States Navy

B.S., U.S. Naval Acilamy, 1975

Submit:ed in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

frem the

NAVAL POSTGRADUATE SCHOOL
December 1983

Authors:

IAproved by:

Thesis Advisor

Second Reader

Chairmaiz, £Epartment of Cotuputer Science

. . . -. _1

pUDean o f n~. Policy Scfie-nces

3

* .'.*, ,- : .. *".; -., * ,K* , '. , : , ' ', .. ' .'..,m .. -. > *," . -, ;'&:. ..c .: - *-..-

4 ABSTRACT

This thesis demonstrates a methiodology to ba used by a

Program Hanager to allow him to procedurally monitor the

design development of an embedded waapons system. The msth-

odology consists of a unique combination of several software
engineering strategies intagratal to form a powerful manage-

meat tool. The primary objezctive of the methodology i-s to

provide an algorithmic procedure which stresses simplicity

at all levels of abstraction. Further, the system must be

capatle of generating good syste specifications, good docu-

mentation, and fully understandabla products. Sample prod-

ucts frcm the implementation of the methodology on the

* HARPOON Shipboard Command-Launch Control Set (HSCLCS) are

* provided for illustrative purposes.

'4

4°

TABLE OF CONTENTS

I. INTRCDUCT ION 10

A. BACKGROUND 10

B. PURPOSE 11

C. SCOPE OF THE METHODOLOGY 11

D. METHODOLOGY OVERVIEW 12

II. BACKGROUND OF THE HARPOON CONTROL SET DESIGN . . . 22

A. EXISTING HARPOON WEAPON SYSTEM 22

B. FROBLEMS ASSOCIATED WITH EXISTING HSCLCS . . . 24

C. HARPOON WEAPON SYSTEM CONSTRAINTS 25

D. SYSTEM DEFINITION FOR HSCLCS UPGRADE 25

E. STATE OF THE UPGRADE 26

III. SOFTWARE ENGINEERING SNAPSHOT 28

IV. DESIGN METHODCLOGY 32

A. METHODOLOGY CRITERIA 38

1. Goals and Principles 38

2. Principle Set Synthesis 43

B. METHODOLOGY COMPONENTS 44

1. Data Flow Analysis 44

2. Transform/Trar.saction Analysis 54

3. Modular Development 71

4. Transition to ADA Design 74

5. Specification Refinement 76

C. METHODOLOGY EVALUATION 77

V. CCNCLUSIONS 82

APPENDIX A: HSCLCS EATA FLOW DIAGRAMS 85

5

.

APPENDIX E: HSCLCS HIERARCHY CHARTS 93

APPENDIX C: HSCLCS ACDULE DESCRIPTI3S 106

N APPENDIX D: HSCLCS ADA DESIGN 118

APPENDIX E: HSCLCS SAMPLE SOFTWARE SPECIFICATIONS . . 126

APPENDIX F: HSCLCS SYSTEM DIAGRAMS 135

-A LIST CF R!FERENCES 140

" .BIBLIOGRAPHY 141

INITIAL DISTRIBUTION LIST 142

4.

-N

4.

4;

4-

-4i

.4,"'~ ';..''""". .. ,2"""""""""" "2', . .'-.. .,,•, -:"" . ""'. ". .. , " -..

*.4

LIST OF PIGORBS

1.1 Program Management High Level Flow Chart . 13

1.2 Detail of the Software Engineering

Methodologyl

1.3 Eetail of the CSS System Development.. . 21

2.1 Software Plan from Reference 1 27

4.1 Methodology Sequential Flow 34
4.2 Contributors to the Methodology . . . 37

4.3 Illustration of the Principle Se Synthesis 45

4.4 HSCLCS Source/Sink Diagram . . . 48

4.5 HSCIES System Flow Diagram. 51

4o6 HSCCS Decode Output DFD 52

4.7 HSCIES Display Engagement DFD 55

4.8 HSCWCS Display Engagement DFD Refinement One 56

4.9 Transform Flow o 58

4.10 Transaction Flow o 59

4.11 Isolation of the Transaction Center . . 61

4.12 Marking the Secondary Flow 63

4.13 Dominant Flow First Cut Hierarchy . . . 64

4.14 Secondary Flow First Cut Hierarchy 65

4.15 Cocplete Second-Lev3l Factoring Hierarchy . . . 67

4.16 Hierarchy of Functions: Final Refinemenz . . 70

4.17 Sample Module Description 73

4.18 Sample Module Design in ADA SDL 76

. 1 Source/Sink Diagram 86

1.2 System Overview DFD 87

A.3 Complete Manual Process Data Flow Diagram 88

1.4 Update Track Data Base DFD 89

1.5 Complete Convert Environmantzal Data DFD . . . 90

7

".

*' a -a - % '

I 4*
' i

i -''' • , , , % . , : , -

A. 6 Decode Output DFD 91

A. 7 Plan Engagement DFD 92

B.i First Cut Transform Analysis.. 94

B. 2 Refinement of Transform Analysi-s........ 95

B.3 Process Input 96

B.LI Prccess Engagement 97

B.5 Process Display 98

B.6 Program Design Structure 99

P .7 Irarsition Structure of Fi1--ure B.6 130

B.8 Action Pat-h Structure of Track Data Base

Manager 0 . 101

B.9 Actibn Path of EnvironmerntaJ. Da-a Bass

Manager 102

B.10 Action Path cf Display Managar 103

B.ll Action Path of Engagesment 3anage: 104

B.12 Action Path cf Track Data Base Mgr, with
Heuristic 105

1.1 Hardware Component Overview :)f HARPOON

Weapon System 136

F .2 Existing Cannister Launch HSCLCS MCI? 137

F.3 Proposed Cannister Launch HSCLCS MCI? 138
F.14 Saxple Display from Proposed MCI? 139

8

- AC Kilo LEDGMENTS

The au-hors wish to thank the following people. LCDR Ron

4 modes, our advisor, fcr supplying -:-- necessary guidance and

s upport to sae us through the diffi.cul. times. LCDR Ron

Kurtlh, our second reader, fcr his insight and tizely encour-

agement. Finally, and most importantly, to our wives, Marti

and Shirley, for suppcr.ing the sucaessful completion of our

work.

"'-.

"! I. IN TRODUCTIDN

l. BACKGROUUD

V Project Management within the Navy involves the

coordination of a ccplex set of managerial and technical
responsibilities. The complexity is the result of such

factors as the diversified areas in which a Program Manager

must become competent and the size and complexity of modern

weapons systems. The task is aggravated and the problems

magnified by several factors including schedule limitaticns

and resource scarcity (human, monetary, procedural manage-

ment tools, etc). Because the current institutionalized

procedures are inadaquate, a Program Manager has insuffi-
cient tangible guidelines to organiz _ a project in a way

which will counter and mitigate complexity.

As a consequence, most projects suffer increasing inef-
ficiency which is paralleled by a rise in disorganizaticn.

This is a sure result of unccntrolied compl.xity. On_ of
the more nctable areas of inefficiency is in the Drocess of

specifying -he desired system. Dur current "methodology"

all tco cften generates nebulous and inaccurate system spec-

ifications. This situation be-gins a snowball effect of

increasinc ambiguity as contractors, bidding on the project,

attempt tc design a system to meet specifications which may

not be ccmplete or correct. Ther-fore, contractors are

forced to react to the assumed meanng of poor specifica-
-ions rather than acting toward generating a clear, logical,

and correct design. This approach to generating specifica-
tions generally results in the contractor's proposals not

meeting the user's real need. Hopefully, pzoblems are

discovered early; tie later they surface, the higher the

10

".A .. i ' ,% ,,' '.f , " . . " . " . ' " . - . " . - , . . . - . ".• . . - . . -
L e'I.t ., ,- _- % % --. ' . . " - " . . " . ' . ' ' ' "" - .

I

cost to ccrrect them. A- best, however, these unde-ected

flaws cause the needless loss of much time and money (after

the project is given tc a con-racto:-) rege:dless of when

discovered.

To summarize, complexity is inhezent but controllable in

all projects. We currently dc very little in at-empting to

control it. rhe resulting disorganization leads "o time and

money losses mainly due to poor specifications.

E. PURPOSE

This thesis presents a prcc.dd_-al methodology for an

embedded weapons system's s p-c- ficatior development and

design documentation, answering ta9 need defined in the
previous section. The method is abstracted from a case

st.udy of the Harpoon Shipboard Command-Launch Corntrol Set

system devel: pmnt initialized by Sentman and Maroney

[Ref. 1] and refined by Olivier and Olsen (Raf. 2]. It is
our intention to show that by using this methodology,

complexity will be reduced and the following improvemqnts -o

embedded weapons system procurement will be realized:

1. better specifications generated,

2. better evaluation of contractor's proposals,

3. increased efficiency within the project manager's

office,

4. better pass dcwn infcrmation available to the project

manager's relief, and

5. develcpment ccsts lowered.

C. SCOPE OF THE HETECDOLOGY

The methcdology discussed in this thesis is intended to

apply to the development of all embedded ccmputer systems

for tactical weaponry. The possibility for a broader scope

exists since the underlying principles are widely

lt

<% "

applicable. However, further generalizing of the method-
ology is nct appropriate at this time since the case s-udy

only addressed a tactical weapons embedded computer sys-em.
Figure 1. 1 shows the placement of the Software

Engineerirg_ M.ethodology within the initial waapons system
-' procurement phase. Figure 1.2 details the general flcw of

con:rol within the Software Engin-ering Methodology. This
figure also shows that while the Contrac-or Support Services

(CSS) Contractor develops the specifications and other prod-

ucts, the Program Manager lends guidance to and approves the

final products of this process. The guidance supplied is of

a managerial and not a technical nature. Sinc _ our handlinq

of the methcdology is concerned with the technical issues of
how the prccedureqs should be performed, the thrust of cur

discussion will be aimed at the CSS System Developmen- block

of Figure 1.2.

D. HETHCDOLOY OVERVIEW

It was cur determination that the system design method-

clogy, while generally only an abstraction from the case

s-udy, must possess several broad traits in order to meet

the objectives stated in the Purpose, Section B. Where

these traits were not innate in the abstracted procedures,

the methcdology was refin.d to encompass them. rhese traits

are introduced below. The Conclusions portion of this

thesis, Chapter 5, discusses why each of these traits is

necessary and how they permeate the methodology.

1. Simplicity. Simplicity of the methodology and in the

understanding of its goals and products is necessary.

Unless a system is simple, it has grea- potential to

become part of the complexity problem -ather than

part of its solution.

12

' '," -' : Z....,.-... ..:..--.-.....:-..:. -.......-.- .. ---... ,-----.. ...-....---... ..,.

C7,

N. CC INUT

DAT I

-- IAA

S 0I G

'p.S

M E ITHI0IA0L 0EGT

SPECSIO

I~ IN DAA

I DECISEON

-- - - - - -- - --FINAL- - - - - - - -- - -

REQUEST
- I FOR FOR

I PROPOSALS

Figure . Prograu danagement Hi1gh Level Flow Chart.

F 13

[i IT I4

FUNCSPECS
I E

-. IPROGRAM GUIDANCE CSSMAAE j bTE

I REIE DEEOMT

I IPOUT
D DESIG

SPDCSNS

IFigure 1.2 Detail cf tha Softwa~a Engineering 3sthodology.

.1'* 14

7 i V

2. Generator of Good System Spec- -cations. The me hcd-

olcgy must prcduce firzm, finsly-tunei, an~d in.-hcus=

system specification3s. Noze that the term In-house

refers to the projact being directly supervisad by

the Program Manager regardless of where thF actual

work is performed. To be most effective, h-lw~ver,

the actual work should be done in thc- same general

iccation as the Program Manager 0i . the same

office, office building, :r group of buildings) .

This assumes that it -Is nazcessary to have physical

closeness of the Program Manager and t hq prcjcect

designer in crder to achieave their con~tinual and

effective communication.

*3. Generator of Good Do3cumentaticn Products. The wsth-

cdclogy muist prcduce products which sarve as a prcpe-r

passdovn to r91liefs of4 ther Program %lanager and his

* staff memebers. If design lezisicrts and system spec-

ifi-cations are not* properly documented, cc~pcrA,

kncwledge will surealy be lost upon job turn-over.

L4. Generator of Under:standabla Products. The method-

occy must produce products which require little

formal training to understand and use. hUsc it m ust

t e couched in terminology zeasily absorbed by the

average Program Manager.

To ensure that these brcad systam trait a.6ahevd

th a methodology must yield products which possess several

sioecific featurss, inter ilia understandability, reli-

ability, eff>' 'cy, and modifiabil',ity. Thess are the major

goals of '+-ware angirneerIng des--gn methods. To

achieve the- ic goals, the software must adhere to

many structur L -ac, ples. Ross, Goodenough, and Irvine

A (Ref. 3] provide the following list f. required principles:

15%J4

* .-. -

1. Mcdularity. The modularity principle defines how to

structure a software system appropriately.

2. Abstraction. The abstractioai principle helps iden-

tify essential properties common to superfic iaIly

different entities.

3. Localization. Tha localization principle highlights

methods for bringing related things into physical

prcximity.

4. Hiding. The hiding principle highlights mhe

Importance of making nonessential implementa-ion

information irnaccessible. It enforces constraint on

access to infcrmation.

5. Unifority. The uniformity p:inciple ensures consis-

tency.

6. Ccsoleteness. The completeness principle ensures

nothing is left out.

7. Confirmability. The confirmability principle ensures

that information needed to verify correctness has

been explicitly stated.

The methodology must meet the goals and objectives detailed

above and must possess the listed traits. It must also

adhere tc all of the principles of software engine=.ring

design strategies. Only by religious adherance to these

criteria can the complexity of designing a tactical weapons

system be significantly reduced.

There is one fundamental premise of this methodology

imperative to its success: the system software development

must hold top priority with hardwire issues being deferred

until the system specifications are comple-ed. In other

words, the software decisions must drive the hardware selec-

tion. This premise has been reiterated and substantiated by

numerous case studies performed in recent years among them

Barry Boebm's "software first machine" [Ref. 4]. In view of

the fact that the amcunt of computer d-velopment money spent

16

on software is several times the amount spent on ha-dware,
this is a lcgical prioritization of project emphasis.

The basis for the above premise is that, in crer to

meet the gcals of reliability, modifiability, main-ain-

ability, and to a large degree portability In software, it

must be procedurally dev-loped independent ¢f and without

regard for the hardware on which it will exccut_. A major

source of frustration and inefficiency for programmers and

maintainers of current. tactical weapons system software is
that the hardware is ingrained in and ar. inflexible part of

the system. Consequently, all modifications to the software

must he couched in the limitations of the system har-dware,

limitations which often require that software mcdifications

disregard all principles of software engizeering. If the

reverse process, that of allowing the hardware to drive the

software, is used, these hardware deficiencies are quickly

realized. When this occurs, the potential for maint=.inir.g

the desired goals specified above is grea-ly reduced.

Holding off on the hardware specification until the

methodology is completed is not an unrealistic proposal.

This is especially true in light of the high frequency of

hardware change and upgrade which most weapons system

projects experience. The basic idea is simple: it is rela-

tively easy to find shelf hardware to implement a software
system while the difficulty of achieving the design goals

listed akcve on a specified piece o' hardware is at best

unpredictable.

A standard argument against having the software drive

the hardware is that there are many hardware systems

purchased (one per platform) but only one software system.

This basically implies that cost savings are more a function

of hardware than software. This argument could be valil if

no modifications to the software9, which des-roy its struc-

ture, were required. But the probability of achieving this

17

% %*

cver the system's life cycle? is Incredibly small. if ths

structure is lestroyed, the future sys-tem ccsts, evmn in

iisccuntad cr constant dcllars, would invariably be many
tJmes the initial cost savings in hardware.

Prior t, initiating the procedures cf the methodology,

the Procram manager along with his staff must brecome

familiar with the current project locuments and the? specific

*pur--osaz and mission of the weapons system. The first step

s o eme intimate ly famili ar wi-h te ta
S-ciiations detaled in the Life Cycle Management

Milestone Zero documentation, the Justification f or Ma jor

Svst.Pu New Start (JRSYS) .These broad system requirements

*are develooed based on a projacted mission need by

De~artment of the Navy planners. In-house refinement of

-t.hese Brcad Specifications due to zhanging negds, t echni cal

advancements, and inputs from the fleer (the user group)

Produces a set of Initial Functional Specifi&cations. Next

*the Initial Funct-ional Specifications are used as the input

*to -the methcdology tc design the proposed system utilizing
-the ri nci1 les of scftware engineering. Agqaina Fi-gura 1.1

* provides a 7rachi-c repressntaticn o)f this flow.

Three disloint items are pertinent to the overall view

of the methcdology in this stage of the sysrtm devslopmant.

First, the system design is most likely being parformed by a

Cont~act:cr Sunport Service (CSS) firm. This is because the

*Proaram Mara'amr nor his staff have the time and in many

*cases the atility to Ferform these tasks. Second, this CSS
firm- isefcieypato the Program office. Itshould

* not be -hcucht of as a separae entity but rather as a tech-

%~ rical rep'resentative augmenting the Program Manager'Is staff.

This closeness ensures that the Program Manager's desired
s stem will be generated. Third, the products produced by

V. the systam are generated and updated i4teratively (see Figure

1.2). This continual refinement of the products ensures

j~. 18

qcod documentation of the perceived systsm. Th-se items of

note must be fully comprehended by the Program Manager in

crder to most effectively utilize the methodology.

There are four output products gana-ated and refined by

usina this methodlogy: a detailed set of system specifica-

tions (t.e final Refined Specifications) , complets Data Flow

Diaarams and Hierarchy Charts, the designed system in ADA

Sostem Desian Language (SDL) with Module Descriptions, and

D-4sian Decision Documentation (see Appendices A-E which show

* these troducts for the HSCLCS design). Ccliectively they

provide all the documentation requi-ed to perpetuate ths

cor-orat- memory of th- project and to give a complete

Picture cf the proposed system. Individually they provide

the following functicns:
1. System Specifications. These are the detailed speci-

fications delivered to project bidders responding to

the request fcr proposals. T he higher the leve=l of
refinement of the specifications when en~ering this

nhase of weapcrs system development, the better the

chances are that bidders will develop sound system

=rcpcsals to meet the real need.

2. Data Flow Diagrams (DFD) and Hierarchy Charts. These

-rcducts provide a graphic display of thm system by

illustrating the system functional operation. Using

onl7 the functions to be performed and the input and

outout data needed to perform these functions, DFD's

and Functional Hierarchies are simple to generate and

Use.

3. Design in ADA SDL Uith Module Descriptions. The

design provides a procedural-level illustration of

the system. It documents how the required functions

shcwn in the DFD's are transposed into a hierarchy of

zroc.dures, fuctions, and tasks for data manipulation
in order to perform these functions.

I."

19

do

% "' "- '"- "" " -

4. Design Decision Documentation. While most design

decisions appear in cther documents (i.a. the speci-

fications, design, etc.), some a-e no . feasibly

includable in cther pro-ducts. The Dpsign Decision

Documentation provides a place -.o store pe.rtinznt

facts and parameters of the system.

Thus far in this sacticn we have dealt with tha neces-

sary goals, principles, and requiraments of the Software

IEngineering Methodolcgy box of Figure 1.1 and not ths

mechanics of the system. This is because the high-l.vel

.- view cf the methcdology must be one of achievement of design

objectives and not in the procedures necessary to produce

" documents. Whether or net these objectives are met will be

the subject of Chapter 5, Conclusions. However, to provide

a proper overview of the methodology details Figure 1.3 is

included as an illustration of the iterativs product formu-

lation phase. The de.ailed discussion of this flow and its

subgoals is the sole subject of Chapter 4.

20

, -n nun--N,,& i ll &,l, %. l,, d- ' ,,a '', , '.., . . , . -o . . , , . . .

INTER-
I MEDIATE

* I PRODUCTS I
I PROGRAM

* f GUIDANCE

I ~cSSII SYSTEM.
I DEVELOPMENTI

r-DIAGRAMSI

DESIONS ANALYSIS FUNCTIONS

ESG IN
C*I

C I
DEISON

'M

fD E NS ODUAR MDUL

IRI IOSSG
H AD DEG _ _ _ ENS ___D

Pigure 1. 3 Detail of the CSS System Development.

21

-J

'.4

V V

11. BACKGROUND OF THE HARPOON CONTROL SET DESIGN

Recently when the missil subsystem cf" the HARPCON

Weapon System was upgraded to include two new block enhaace-

ments, the existing HARPOON Shipboard Command-Launch Cor-!ol

Set (HSCLCS) was rendered i.nalequate to support the d.--sign

features of the new blocks of_ missilzes. Upon axaminat_ n by

anal ysts, i;t was decided that the ixisting HSCLCS software
was not modifiable and a new design effort was necessary.

The new design would need to not only cover the recet

missile changes but also be fexibla enough to be modified to

support anticipated technical achilevaemts i n t he nesar

future. This chapter will introduce the basic facets of t:

HARPOON Weapon System and provids background on -:h~ work

*done in two previous theses, [Ref. 1] and (Ref. 2], tward

* redesign of the HSCLCS.

* *A. EXISTING HARPOON WEAPON SYSTEIM

The HARPOON Weapon System (HWS) has been deavelopel to

fulfill the requirements of the Navy's ant---ship mission.

AThe HNS is currently deployed on surface shlips, submarines

and aircraft. The HWS provides over the horizon an-ti-ship

capability in all weather, day c= night. rhe HWS is

comprised of the missile, launcher, and command-launch

subsystems. The sbip-la unched HIARPOON employs either

onboard or third par-ty sensor dat-a for targeting InfA'orma -

tion. The missile is a "J'a unch and forget" w-a p:n, since no

ship control or information is needed after launch.

For surface ships, the HWS control and data processing
functions are provided by the HSCLCS which Ahas threes modes
of operation: normal, casualty and training. In the ncrmal

mode he mjor unctcns of the HSCLCS are:

22

1. Distribution of power to various HWS equipment.

2. Selection and application of missile warmup pow-r.

3. The ability tc conduct various automatic and manuiall,

initiated tests which confirm the operability of the

s y Stem.
4. Distribution cf ship motion data from ship equipm=nt.

5. Selection, transfer, processing and display of target

data.

6. Coordination c4. the selection of the -t:actical missile

mode and type of fusing.

7. Selection of the launcher cell containing th3

.ntended missile to be launched.

8. Initialization of the selected missile and the super-

vision of the exchange of data between missile aad

other HWS equipment.

9. Control of all missile firing activities.

These functions arp implemented and integrated by ths

HARPOCN Weapon Control Indicator Panel (HWCIP) and the

HARPOON Weapon Ccntrcl Console (HWCC)

The HWCC contains most of the HARPOON system-unique

command and launch subsystem equipment, including the Data

Processor Computer (DPC), the Data Conversion Unit (DPU) and

the HWCC life support equipment. Together these components

perform data processing and conversion among various data

types and provide interfacing with existing sensor and

ship's equipment.

The WCIP provides visual status information to -he oper-

ator during formulation of the fire control problem, and
additionally provides manual controls for the opera-.or. The

existing WCIP is shown in appendix E.

The DPC is a 16-bit microcomputer with 15K of E-RCM.

The DPC uses an assembly language pzogram -o provide the

following:

23

6...

1. Launch envelope parameter validation.

2. Missile command aeneration for implementation of
missile ccntrcl parameters inzluding ship's a.t-i-ude,

search pa-.tern orders, engine starting, flight :.rmi-

nation range, altimeter setting, and various s !ec-

table flight trajectcry and maneuvering modes.

3. Pre-launch testing.
4. Pre-launch sequencing and timing.

5. Data formatting and transfer synchronization.

The DCU processes all digital and analog signal conver-

sions as required by installed hardware. The DCU also

provides interfacing of targe- data inputs from the Naval

Tactical Data System (NTDS) Slow Int-rface. Ship motion

parameter data is also converted in the DCU.

E. PROBlERS ASSOCIATED WITH EXISTING HSCLCS

Since the existing software of the present HSCLCS is

written in assembly code and is heavily hardware dependent,

the maintenance cost in the face of periodic missile chances
is relatively high. Also several different hardware config-

urations exist for tie different firing platforms.

The HSCICS also has numarous deficiences in engagement
planning as the operator cannot fully control the features
of the new block missiles. In fact, the operator has no

automated assistance in engagemet planning in the current

system, and there is no display of tda tactical situation a

the WCIP. The current firing solution does no- have environ-

mental factors included unless the operator considers them

manually. On some platforms NTDS was intended to provide the

services mentioned in most of these deficiencies but the

location of the WCIF has inhibitad this effort and indeed

many HARPOON platforms do not have NTDS!

24

Lf.

C. HRPOON WEAPON SYSTEM CONSTRAINTS

The constraints in this section are fo= the most oart

technically orianted. Ianagerial constraints ars to ba

determined by competent authority at a 1a-ar date. The

" upgrade cf -he HSCLCS must be abla to support th= new block

" missiles as well as -he old ones sinc= the oil missiles will
be_ in the fleet for some time.

The implementaticn of the upgrade mus-t continus to

provide all previoius fuctions as well as :-erfacinJg with

NTDS. The existing launcher hardware will r-main the same

and the physical size of the HSCLCS must be the same.

While the DPU hardware configuration cannot change., the

EPC software is subject to change as necessary to implement

the upgraded HSCLCS. Although -he current software is in

assembly language, this is not a requirement for the
upgrade. System reliability of the upgrade must me-: or

exceed existing standards for the HSCLCS.

D. SYSTEM DEFINITION FOR HSCLCS UPGRADE

A detailed discussion of the system definition for -he

upgrade can be found in [Ref. 1]. It is summarized below.

The hardware of the system will change significantly.

The existing DPC will be replaced with a commercially avail-
able CPU with additonal memory. The WCIP will be modified to

include a display which shows the current tactical situaon

and programmable software keys to zontrol both the display

and engagement planning features which w"ll be incorporated

into the DPC sof-ware. A hook and cursor similar to thosei

in NTDS will also be provided at the WCIP for the opera-cr

A display p.ocessor will be attached to the WCIP. The DCU
hardware will remain the same however the software must be

changed to accommodate new inputs f-om NTDS and environ-

mental data.

25

.................. %
.

7. - - .- -W.W--. ' -. . W. C Pk .1% -. S

The software upgrade of the DPC wdhich i-s the major part

of the HSCLCS focused upon by this thesi-s is to slimirnats

the existing deficiencies mentioned in the section B of this

chapter. Specifically, a scftrware plan muse be developed

which prcduces adequate software t ha t provi-des r equi_4rad

capabilitities and is flexible enough in design to be modi-
fied in the future with minimum amount of blood and tsars.

1. STATE OF THE UPGRADE

The software upgrads of the HSCLCS has been the subject

*of the two previously ref=.renced thesas. The initial thrus-:

cf the first thesis by naroney and Santman was to develop a

software plan, Figure 2. 1, and complete the -fir--st three

phases. E mpha sis was placed on good software engineering

techniques. A systems raguiraments analysis was conduc-.ed
which prcduced revised system speafcain and laid --he

*foundation for the prel- in ary design. Data flow diagrams

aAnd subsequent tr--ansfcrm analysis techniques described in

[Ref. 5] were used. ADA was chosen. as the system design

language in anticipation of isproclamation as the standard

DOD SDL and because it lends itself so well to the modu-

larity concepts necessary for modular design.

The second t-hes is by Olsen and Olivier continued the

sof tware development by deriving a preliminary design from

the products of 'laroney and Sentman. To continue the plan,

a f-inal desiga must be completed along with detailed docu-

mentation. ThiLs final design process is descrie i h

methcdolccy chapter.

26

c 0.

I0 z

I~ 40

I1 z

I 0 'A

CT

II

Figure 2.1 Softvare Plan Afzom Rafe=sn ce 1 .

27

-t ~~~~~~~~~~~~~~ ~ ~~~~~~ -' ' .-_ . -. ._ -5,-, _ -,...% ' ' ' J -- ,-.> - -- .- '!

J.J

III. SOPTWARE ENGINEERING SNAPSHOT

The need for good software engineering techniques has

become increasingly evident in th . pas, decade with the

exponential qrowth cf software development and maintenance

costs. Since necessity is the mother of invention, the

number of new software -ngineering methods and techniques

* has also grcwn exponentially. The major contributors to the

methodolcqy of this thesis, Pr-ssman, De Marco, and Booch,

all have derived systems for software design using thsir cwn

particular styles. In -this chapter we will briefly discuss

those st:les and alsc comment on some other software design
methodologies.

Structured design was first publicized by Yourdon and

Contantine [Ref. 6]. It was developed to be used as the

transition tool between Structured Analysis and actual

imolementation. Composed of various concepts, measures,

rules of thumb, and analysis techniques, this method with

early development by re Marco is the basis for the Pressman

design methcdology.

In [Ref. 7], De Marco describes the life cycle of a

software project from requirements analysis to specifica-

tions. After an initial survey of systems rquirements, a

data flow analysis is conducted using data flow diagrams.

The next steD involves creating a data dictionary from the

data identifisd in the data flow analysis. At this point in

re Marco's me+thodology, the data flow diagrams are trans-

lated into a set of specifications using a subset of English

called Structured English. Structured English is a
s-ecificaticn language that makes use of a limited vocabu-

larv and a limited syntax. The vocabulary consists of
imperative verbs, terms defined in the Data Dictionary, and

28

2-.......................-'-,.. . -- . .- -- '.-.... .. -... - ,....-.. ,- , .,-

certain reserved words for logic formation. The mappinr of

the data flcw analysis to the Structured English specif ca-

tions is fairly algorithmic but uses several heuris-ics -hat

will not be discussed here. De Marco also explains the

desired traits of a design based on the specificaticns

generated, but does not include a procedure for realizat or"

of the design.

Pressman, (Ref. 5], elaborates on all phases of the

softwars life cycle and gives several different approaches

to design such as data flow oriented design and data struc-

ture oriented design. In bcth of these areas he carries the

software development process through the praliminary design

phase but does not address specification generation. The

data flow analysis cf Pressman resembles that of D? Marco

but his transform/transaction analysis which leads to module

hierarchy charts contibutes significantly to design

realizaticn.

The okject orienteff design methodology of Booch (Ref. 8]

concerns the development of design after some sort of data

analysis has been ccnducted. Booch does not indica-e a
preference as tc whether data flow diagrams or any other

kind of analysis identifies the objects in a project as long
as the method is complete. After objects are identified and

given attributes, this methodology develcps a system design
by stepwise refinement of a simple prose description of the

system. This prose evs.itually is transformed into ADA

system design language. No guidance for conversion of the
ADA SDL to structured system specifications is given in zhis

methodology.

There are several system analysi-s and design tccls -hat

have keen itplemented but have not gained wide-spread use.
SADT (a trademark of SOFTECH, Inc) is a system analysis and
design technique developed within the Ycurdon organization
that is used as a tcol for system definition, software

29

2- '., .''.'. .%'-,-. "%" °"" ' , ,' ' "' ' -" J ,'.'-',"- - •"... ". - ,.

L e.

requirements analysis, and system deasign. The ui-h'dolcqy

*encompasses technical tools and a well-defined crgariiza-

tional harzess through which the tools are applied. An

-automatzed requirements analysis tool i1.s SEEM (Ref. 5],
*~~- her elmns trbu tes , relationships, and structures

*(all parts of the Requirements Statement Language (ESL)) are

combined tc form the details of the raqui-remsnts speciJfica-

*tion. SEEM was initially designed for embedded computer

systems and requires a software support package called REVS

*which uses computer graph ics and repors oninrmto

flow. S 4:ill ancther automated tOolI i6 CADSAT
(Computer-Aided Design and Specifi-cation. Anal ysi-s Tocol)
which with FSL/PSA prcvi-des an analyst with several capabil-

* ities. Th~ese include:

1. description of -Ln f orma ti.on systams, regardless of

applicaticn area,

2. creation of a data base containing descriptors for

tbs informaticr system,
3. addition, dele+-ion, and modifi-cation of descriptors,

and

4. production of formatted d:ocumented an'1 varicus

:epcrts on the specificaticn.

CADSAT dces not present a panacea but itdoes provide

*benefits that include documentation q uali6t y, easy cross

reference of documents, easy modification, and reduced main-

tenance ccsts. The major disadvantage of most of these

automated systems is that they require a considerable amount

c f trainirg in order to be used effectively. However, the

concept of automated design is here to stay becauZ e the

benefits far outweigh the disadvant.ages.
The methods described above are only a f ew of the many

*ways -that software development is being conducted today.

The design tools such as decision tab.es, flow charts,

HIPO-charts, st~uctured flow charts, an d pr-ogram li.stinrgs

30

-.L . - .' - m _ _ - - p r.p.

abound. It is outside the scope of this th.sis tc discuss

In detail all of ths methodologies, but each one is based on

the design principles outlined in this -hesis. : -each

methodology produces results with tha desired cha-ac-e-s-

tics, only through extensive experience can one juigs the

relative efficiency cf the methodologies. Since scftWari

engineering is still at the fledgling s-:age, we can only

hope that these methodologies will mitigate the software

crisis.

31

- - - .. *- ' * - -~ -• . - .

IV. DESIGN 3ITIODOLOGI

The methodology for refining embedded comput.r weapcns

systems specif icaticrs, which is the subject of -his
chapter, is required to possess an algorithmic form and

logical design a- all levels. By levels we mean the lev-ls

of abstraction from which the methodology can be viewed.

Pr example, an outsider to the projct office would view

the methodology as a "black box,, which inputs broad specifi-

cations and fleet criteria and outputs final dsign specifi-

cations and refined desigr products (see Figure 1.1). The

Program Manager would be heavily involved in the it:a-ive

refinement of the system specifications ard products and

consequently would see the methodology as a generation and

refinement tool. His "black box" would be the Ccntractor

Support Services (CSS) System Development block of Figures

1.2. Finally, the CSS Contractor would view the methodology

as an algorithm for Froduction. This algorithmic flow is

shown in Figure 1.3. These ars proper abstractions for the

methodology; they optimally map the responsibilities of each

of the individuals into their required level of concern for

detail.

This chapter is concerned with .r.roducing a mej-hodology

at the CSS Contractor level which embraces all of the goals

and principles and proper trade-offs of Software Engineering

design. This level can be viewed as the bottom of the

abstrac-:ion hierarchy because it is .he lowest level at

which tie entire design is still within view. It is our

belief that if this level of the design methodology is

well-structured and simple then the entire hierarchy will be

so. This hypothesis wll be further developed in Chapter 5.

32

N'

The methodology, at the level specified above, W P_

conceived and tuned using the f ollIow ing pair of g-a-;Jn a

rules: itmust have a simple, saquential form and It must-

support a lata transform driven des ign. By data -rernsform

driven design we mean that the products of des gn m ust

*project hew a datum is interrelated to ot.her data and how

data is transformed as processes act upon it. The re:asons

for these basic requirements are the subject o f the two

subsequent paragraphs. The achiavement of the fir-st

requirement is best revealed by an illustraticn; Figure 4. 1
serves this purpose. Notice on this diagram that ths flow

*is cha~acterized by singular inputs and outputs with a

*proc-essing block between them. T~his by defi-ni:ior iS the

*simplest fo:rm of seguential flow, thus -he fizs t r - I _ is

sati sf isd. Figure 4. 1 a d di-ti'on all1Y shc ws t-hat tn's first

s sep of tte methcdolcqy or what w= will henceforth ref=r to

*as the first methcdology functlo. is t:o manipulat s the spec-

*ifications into Data Flow Diagrams. This function, adata

flow analysis, str ict ly follows De Marco'S procedure
[Ref. 7], a procedure which fully Incorporates the cri-Sria

for data transfcrm driven design listed in the defirition

above. it follows that the second rule: is additinal

sati-sfied.

There are several strong reasons 'for requiring a method-

clogy with simple, sequential flow. For example, the usage

*of such a methodology is straight-fcwar-d and easily

grasped. Further, this type of flow tends to be highly

- ~ logic rather than heuristic oriented. But the chief reason

*we wanted simple, sequential flow was to have a szructurte

-)which readily supported our methodology model. This molel

v iews the system as a series of functional mappings, e.g.

aata flow analysis is a function mapping specifctin int

hi-erazchy of Data Flow Diagrams (see Figure 4.1). Thce use

c f the wcrd functicn is not intended to impl y tha-, the?

.. ~ .*

SPECS

DATA FLOW

-- ANALYSIS

DATA FLOW

I S C

I DIGRM

TQANSFORM/I

' RANSACT

LY IS

ANALYSIS

HIERARCHY OF.

FUNCTIONS

D- EVELOP-MENT

MODULE

DESCRIPTIONS
- TRANSI

L- TION TO
/ADA DESIGiDESIGN IN

ADA SOL
SPECS

- REFINE-
DESIGN ENT

DECISIONS REFINED SPECS

4 1I Aet.Adology Sequenta]l Flow.

34

l~ , .'. ", . ,. ' ".''_ ,,-" , -;. . .--- - .' i '._- ,,, . ,-. -.- ' .,, - -, '-- _' ,.,:.' --I. I" _ . .: .-. : ..

'r V7....

products, i.e. the Data Flow Diagrams, produced by the -e-h-

odology are themselves unique; the mapping is no-

one-to-one. However, we suggest that each of our methcd-

ology functions map their input product into a small set of

cutput products which is a realistic partition of all

possitle output products. By realistic partition we mean an

equivalence subset of the output products which contains

only those products having all of the desired structurs

principles but which omits those grossly inefficient repre-
sentaticns of the solution. The ben-fit cf this terminclogy

is it eables the reader to view the methcdology frcm a

familar technical vantage. Using the tsrminology we _ntro-

duce our hypothesis that these functions retain the proper-

ties of the input Froducts by transmitting them to the

output products. In other words the methodology functions

are designed to ensure that the good initial structur Js

carried forward throughout the methodology.

The main reason for requiring th- m-thodology to use

data driven design was based on :he fact that real-time

systems (all applications of our methodology will be real-

time systems) are easiest to dasign this way. Shcoman

[Ref. 9] supports this hypothesis. We decided on data flow
design because the graphical nature of the data flcw model

supports DeMarco's [ef. 7] belief that all products of

analysis functions should be graphic.

The procedures of the methodology represent the compila-

tion of related work performed by several distinguished

pioneers in the field of software engineering. But the

overwhelming majority of contributions came from three indi-

viduals: De Marco; Pressman; and Booth. While each cf these

men see the problem in the same basic light, they have chan-

neled their research efforts into different facets of the

problem. The De Marco contribution consists of a method for

transfcrzing system specifications into a set of structured

35

- %

products, Data Flow Diagrams, which represent a graphic

solution to the specification requirements. Pressman

details a procedure, transform/transaction analysis, for
creating an abstracted hierarchy of contex--indep r. d a.nt

modules, a Function Hisrarchy, from Data Flow Diagrams.

Booch, claiming to have achieved object oriented design

[Ref. 8], contributes a method for developing a final design

given a Function Hierarchy. It will be shown later that the

Booch procedure is in fact an objsct oriented lesign tech-

nique. Figure 4.2 illustrates the specific areas of method-

ology coverage by each of the authors. Fortunately for cur

purposes, these areas of specialization correspond to c-e or

more of the specific functions iz our methodology such that

all of them (except Specifications Refinement which is our

contribution) have been significantly researched. Thus only

the structural interfaces between the various contributors

need to be specified before reducing the methodology tc a

series cf independent functional units (see section B).

The effort required to structurally in-erface between

the contributors is minimal. On the surface this may appear

puzzling in light of the complexity normally encountered

when synthesizing a complete product from disjoint pieces.

But because each of the contributors used the same generally

accepted product formats at the interface points, t.h.s

problems were not present. No interface is required between

the De Marco and Pressman pcrticns of the methodology. This

is because Pressma3 uses all of the rules of De Marco to

produce Data Flow Diagrams, the input to his transform/

transaction analysis. Consequently, we can viaw this situ-

ation as if De Marco and Pressman "collaborated" on ths

interface. Nor is ar interface between Pressman an! Booch

required. The portion of Booch's method we use requires

only a function hierarchy as input. Since :his is the

output product of Pressman, no structural interface s:eci-

fied ty the methodology is needed.

36

I]1.()ml M W - % ' , " ;*%** ' " '** * *-.*. " .- , ? : ,: ' ' '

- %7 1%

SPECS

,, I DATA FLOW
.r- ANALYSIS

DATA FLOW DeMARCO

DIAGRAMS
/TRANSFORM/1

I' TRANSACT
I |ANALYSIS

HIERARCHY OF. PRESSMAN
FUNCTIONS

, MODULAR
r-- DEVELOP-

MENT

I MODULEI DESCRIPTIONSI I

* | TRANSI-
TION TO BO0CH

ADA DESIGN

DESIGN IN
ADA SDL

* SPECS
REFINE -

*DESIGN MENTDECISIONS

REFINED SPECS

4I

Figure 4.2 Ccntributors to the Methodology.

37

*. - * . . * . -'.*-Q- -. *~.

A. NETHCDOLOGY CRITERIA

1. Goals and Pricivles

The goals for the software produced by the method-

* ology (understandability, reliability, efficiency, and mod-

fiabilit.y) are generally accapted by software eng-Jiners as

those of primary i*m porta nce. In ganeral, this list sencom-

*passes all of the relevant attri;.butes necessary tc ansurr!
that software will realiz e it minmmlieccl ot

These goals are defined as fcllows:

1. Under stan da bi4lity . Understandability is that pcten-

tial for software to projac- a clear and lcgica.-

meaning. it is achievable in all systems readless

of the complexity if both ttia structure and the level

of abstraction area appror-riate for t he proposed

appl ication. It must be stressed tha- both o,: -hesq

properties are needed. Having merely a formatted

structure yields a legible but complzx product. I

order to realize any of the other goals, understand-

ability is paramount.

2. Reliability. Reliability is the abilityothsf-

ware to functicn, under all conditonasth pei

fications intended. It can be thought of as freedom

frcm anomolies as well as the3 absense of blatant
mistakes. Beliability also encompasses Srror

recoveryr the abi-;lity of the program to continue3

proces3ing in the event c-r non-catastrophic system
12~aillure. Achievement 0o total :esliability is

extremely dif fic ul1t o~ p:: ve ever. in -a s ysteam

strictly adhering to srf w&7=- eng ,eeriaq pri cipes

It is impossible to prove sof-tware re:biyunder

lesser conditicns.

3. Efficiancy. Effic=.ency, as a stri-u4d-vn3 coal,

..s wrong. Howe vsr, bia:~. m-rcec akcs a

38

i2 I

L .'.
o

- .- . - ."...* , - . -- r-r r

System impractical. The efficien:cy balanci must be

" achieved by first adhering o all other goals and

then screeninq for gross inefficiencies which can bs

. corrected by encapsulating and modifying inefficient

- modules. This is suppor--ed oy Belady and Lehman

(Ref. 10] who state that glob 1 oot;mizat on is not a

practical objective, but that by locally op-imizing,

global sub-optimization can be ach:eved. Thus effi-
ciiency shculd be deferred u.z:l a Solid svystm s-ruc-

"ture is established.

4. Modifiability. Mdifiabilitv is a broad term which
encompasses the ability to esasily change sof-ware for

enhancements or errors, for performance -uning, and
for subsetting. The achievement of modifiability is

difficult because the effects of change are very hard
tc predict. Thus modifiability, more t:han any other

goal, universally re-uires the s - rict adherence to

all of the software engineering principles.

To meet -hese design goals, the principles addressed

in Chapter 1 (modularity, abstraction, hiding, localiza-ion,

uniformity, completeness, and confirmability) are the

primary attributes req'.ired of the methodology products. It
seems apparent from cur readings that among the seven prin-

ciples, modularity and abstraction are uniformly accepted as

*he dcminant -equirements of all software. rhis is not

surprising considering that these software qualities, which

,logically reduce larce problems into manageable subproblems,

are the most effective reducers of complexity. These two

principles are highly coupled; one abstracts to reduce

P ipzcCmplexity by modularizing and modularizes by performing a

series of logical abstractions. Thus they should be thought

of as iteratie subprocesses of some higher level generic
design process. A more let aied descr iption cf the

39

°I

requirements and specifications to benchmark the achievement

cf modularity and abstracticr, are given below:

1. Modularity. As stated above, i- is nearly impossible

to address modularity as a s:and-_icne pr:ncto!-. In

its simplest form, however, modularity can be consid-

ered achieved when the scluticn t-o -.he problsm is

reduced to a hierarchy of sepaately addressable
modules. in order for t1-is hierarchy to kpprcach the

optimal solution, though, it must have a good balance

between two inversely proportional measures: the

degree of module complexity and the degree of inter-

fice complexity.

2. Abstraction. Abstraction, too, is not an independent

concept. It can be considered achieved when the

problem has been iteratively expanded (or stepwise

refined) such that each of the abstraction levels has

a sclution representation which captures the essense

of the system at this level, but specifies nc unnec-

essary complicating details. These levels of
abstraction provide an intellectually graspable view

of the probler's solution.

Of the remaining principles required of the method-

ology the most important ones are completeness, indepen-

dence, and hiding. While the presentation of these

principles may tend to imply that they are of second echelon
order, this is not true. Rather they complete the system of

interwcven requirements of the methodology. The resason

these principlsE are presented separately is because unlike

modularity and abstraction these :cncep:s are not univer-

sally accepted in name or in their definition by the

contributors. Yet each of them is either directly stated o:

indirectly supported as method requirements. For example,
Pressman stresses module independance , a concept which

40

- . . ---.. -

[.,, , . + - . ° -.S - . . • ••. • . J +. • . . • • . + . • + . . . - . ° . - -. .

7- Y. S..-. -

" equires modularity, abstraction, and completeness as p-=s-

quisite principles. Thus Pressman must indirectly support
these structural ccncepts. Further, he requir=es the

simplicity of module interface in his independence concept.

* This is actually a loose form of the hiding principle. The

' key pcint, however, is that his method builds a s-::ucte-

which allows hiding to be efficiently appended to the set of
principles across the interface with t-he Booch method. From

a broad scope this implies that the method embraces a more

stringent set of principles at each method interface ulti-
mately yielding a design which adher-s to all of the n=ces-

sary structure principles. This idea is developed in the

next subsection. The specifications for achievement of
these three additional concepts are given below:

1. Ccmpleteness. Completeness, a principle stressed by
De Marco, is a critical property of the products of

cur methcdology. Its cziticality is especially
apparent when performing the firs- finc-i c n, data

flcw analysis. Tt is ,andatory tc ensure that each

system specification is appropriately captured inr at -

least one Data Flow Diagram. If the first prcc edur

of the methodology produces a complete set of Data

Flcw Diagrams then all subsequent steps will have a
good, graphical representation of the requirements by
which to benchmark. Thus achievement of comolet-ness

requires the assurance that each methodology function

carries forward all of the information from -he input

product into the output product.

2. Indepen dence. Independencs, the chief princiol;
stressed by Pressman, becomes an important concep-

when developing the Function Hierarchy. The degree
of module independence car best be qualitatively

measured by first measuring the levels of cohrision

and coupling of the modules. Cohesion Is the measure

41

%,,~~~~~.. .. o . -. :......,,........---........ ,....

r4C.--~r~ r*..iwrr1-. r. r!

of module single-minde-dness [Ref. 5]. The highes-

cohesion, which is the goal state for maximznc

independence, is achieved when every module has a

single functicn. Coupling is the measure of moiule
interconnecticn ar. interdependence (Ref. 5]. rhe

lowest coupling is realized when the ints-r-_caces

between modules are simplest. Low coupling iL also

reguired to achieve modular ind9pendenc. Thus inde-
pend4nce is achieved when the design products have

mcdules which address a specific subfunction of

requirements and has a simple interface when vi-wed

frcm other modules.
3. Hiding. Hiding, a principle developed by Parnas and

hichly stressed in the Booch method, implies the

prereguisite achievemant cf completenass, modularity,

abstraction, and independence. An expansion of the

reguir-ments of independence that distinguishes
hiding as a more powerful concept is that these

single function modules must have a simple interface,

the interface must be the only part of the module
visible to other modules, and how the function is
accomplished within the module must be hidden

(Ref. 11]. This invisibility of module internal

information takes us one step beyond what these other
four principles provide: design decision encapsula-

tion. Therefore, achievement of hiding reguires a

conscious effort by designers to delay design
decisions until the latest possible rime and when

decisions are made they must be encapsulated and

concealed in the structure of the design.

Tim Rentsch has boldly defined the requirements of

the nebulous procedure termed object oriented design
[Ref. 12]. He states that the essense of -his ccncept is an

42

- ,. ,. . • - -- - - - - . • . o . . • . - °. . , ' . .

F.* v .-. -

adherence to the principles of abstraction, information
hiding, decision encapsulation, and modularity. Using his

definition we can conclude two interesting facts. First.,
the Booch method, as Booch himself claims, is object

oriented design. Second, our methodology, because of its

strong adherence to the five major structure principles, is

also an example of object oriented design. As the software

"buzz wcrd" of the 1980's, object oriented design will

undoubtedly be a aust in DOD software by the 1990's.

S2. P-inciplS Set* Synthesis

Ncw that all of the design concepts required in thi

methodolcgy have been formally presentad, it is necessary tc

show how they are related to the methodclogy functions.

This includes determining the point at which each of these

principles becomes an active concept in the design. The

synthesis idea cf this subsecticn refers to the fact that

all of tle individual principles are not uniformly visible
throughout every function of the methodology. They have a

point at which they become necessary and are thereafter
carried forward in the principle set. This idea that

concepts once incorpcrated in the design are thereafter

ingrained in its structure is justified in Section C of this

chapter.
Tc realize a principle at the optimum time in the

design, the structure must be capable of suppcrting the

inclusion of the new concept. A rather simple way of

viewing this requires one to visualize the principle to be

added as needing a set of prerequisite traits. For example,

the prerequisites for independence are completeness,
abstraction and modularity. Thus, if the current structurs

of the design contains the prerequisite traits then the

structure will be capable of supporting the new principle.

L43

a.

".'- ° o '. 'o ° ° .o' . ° % . ° • . .- ° .• .

Eecause the sst of principles Dehaves in tha maner

stated akcve, the structure requirements become increasingly

more stringent as the design is refined. This Is the

desired effect ba-cause the ultimate objective of the method-

ology is to produce a design which encompasses all of the

software traits but maintains its flexibility as long as

possible.

. Tie initial principle sat for the methodology

contains the concepts of abst:acti3n and completeness. I

i easy to see abstraction as a necessity because mach of

the functions iteratively refines i-s products and the

. refinement process is ba sed on levels off abstraction.

- Completeness across all of tht interfaces requires no expla-

- nation; without all cf the parts, the design could not be

correct. At the first interface, the DeMarco/Pressman junc-

tion, the structure must be able to support the addition of

" modularity. The fact that modularity is required at this

point in the design is no surprise considering that the

purpose of the Pressman function is to modularize. The

second and subsequent iterations of the module heirarchy

continually refine the design structure to achieve low

module coupling and high module cohesion. When a satisfac-

tory trade-off between coupling and cohesion is made, inde-

pendence cf modules iS achieved thus appending independencs

to the set of principles. With the set of principles now

containina all the prerequisites, the P=essman/Booch ia-.er-

face structure is capable of supporting hiding. Figure 4.3

illustrates the synthesis of the principle set.

B. RETHODOLOGY COMPCNENTS

1. Data Flow Analysis

Data flow analysis is the first facet of the evalua-

tion and synt hesis phase of th a software r equirement!s

% 44 * - -. . *-. * ..

S. '

*,- II

SPECS

-I -

A C DATA FLOW
ANALYSIS

T P DE MARCOR LI

I A E -
C T TRANSFORM/

MI TRANSACT
O0N ANALYSIS

N S U E PRESSMAN

R N MODULAR
EI D H DEVELOP-

T E I MENTYN
C I
E N

I ITRANSI-
TION TO

ADA DESIGNOI 8BOOCH

SPECS
REFINE-
MENT

IREFINED SPECS
I.I

Figure 4.3 Illustration of the Principle Sat Synthesis.

45
f i' ' - ' . . . , - . . - . i . i .] - ' - . " - - - . - . . . - . -, ' . . ' . . - . . - . - ' . . , . - , , . - , , , , . . - . , - . ,

9°'

determination process. By examining the data flow we aet

the big picture on what the entira system receives as input

and produces as output and the path that data follows in the

system to be designed. Data flow is our analysis start

point because we do not want to get bogged down in specific

areas of a system trying to defins functions which may not
be clear in the initial analysis. Data flow, on the cther

hand, is usually much easier to identify than flow of

control, which in most large scale projects is very complex.

The primary tool we will use to examine the data flow will
be the Data Flow Diagram (DFD). In this section we will

briefly describe how to build a DFD summarizing the methods

detailed in (Ref. 5] and [Ref. 7] and also what the DFD can

give to the Program Manager. We will also introduce a set

cf example DFD's from the HSCLCS system that will be used as

a case study to illustrate the methodology components

throughout the chapter.

a. Data Flow Diagram Definition

The data flow diagram is a graphical aid for

depicting the data flow of the software system being

designed. A complete understanding ,f the DFD is imperative

to the understanding cf the design methodology described in

this paper. The most significant characteristics cf DFD's

are:

1. The diagrams are graphic.

2. They produce natural partitions in a system.

3. They are multidimensional.
4. They emphasize the flow of Iata.

5. They de-emphasize the flow of control.

Data flow diagrams are made up of four basic

elements:

46

KN

, ,,r' . .-., "-- - ." - -. -- . - . - . - _ -. - . . ' "- -,

1. Data flows represented by an arrow or vector from the

scurce of the data tc the destination.

2. Prccesses represented by circles or "bubbles".

3. Stcred information (e.g data bases or files) repre-

sentad by two horizontal parallel lines with a nean-

ingful label.

4. Data sources and sinks represented by bcx=s.

Data flow can be broadly defined as information

flowing tetween two processes or between a process and a

source or a sink. There ar- several general rules

concerning data flow.

1. Data flow names are hyphenated and capitalized.

2. No two data flcws have the same name.

3. Choose names that describe the data explicitly but be

concise.

4. Data flow should not represent a flow cf control.
5. Data flow is not considered a process activator.

Procisses invariably show some amount cf work

performed on data. Mcre explicitly, a process is a transfor-

mation of incoming data flow into outgoing data flow. Each

process bubble should be numbered and given a unique

descriptive name.

Sources and sinks increase the readability of

the DFD by showing where the net inputs to the system come

from and where the net outputs go to. Sources and sinks

differ from files and data bases in that they are considered

to be cut of the context of the system. Thus, they show how

the internal system relates -o the outside world. igure

4.4 is the source/sink diagram for the Harpoon System

Command-Launch Ccntrcl System (HSCLCS).

47

mm . %%iHin a in-MP
' m u , ~,

-, --.- a - - . . , " -. " ?.. ". .. ". ".

SOURCE TRANSFORMATION SINK

HARPOON LAUNCHER
' WCIP AND

OPERATOR MISSILE

MANUAL
DATA
INPUT

SHIP
ENVIRON LAUNCHER MISSILE ORDER

DATA

~SHIP
PARAMETER AND

ENVIRONMENTAL DATA HSCLCS
! NTDS

I OPERATOR DISPLAY

5, I
HARPOONSLAUNCHERHAPO

AND) WCIP
MISSILE OPERATOR

I LAUNCHER
MISSILE
FEEDBACK

1
-I

II

Figure 4.L4 RSCLCS Source/Sink Diagram.

[.4

[.4.

[* - . -

[- .

97 -. N %-,K "

h. DFD Construction

The first point to keep in mind during the data

flow analysis is not to try to learn everything at ons -. ime

about the whole system. Think top down by ccnceptualizing

the high level data flow first, defering the development of

the low level data flow. Especially avoid addressing any

implementaticn details at this time and be flexible enough

in your thought process to start over from scratch if road-

-b- locks are encountered. Remember the data flow analysis

process is iterative.

The primary input to the data flow analysis is

the Broad Specifications of the system to be designed.

Direct liaison with the Program nanager and prospective

users may also provide additional information. A key point

to remember during each phase of the methodology is that

decisions concerning design that are not specifically

addressed in the Broad Specifications must be documented at

the pcint of the decision. These design decisions will

later be used to update the Broad Specifications.

To start the process, identify all net input and

output data flows and list them around the border of your

working paper. This step is important because it is at this

point that you define the context or scope of the analysis

to be conducted. Data flow outside of the scope defined

here will never be addressed again.

Filling in the DFD is the next step of the

process. Wha -t you try to do is put lines in your diagram

depicting data flow and try tc connect them with circles or
"bubbles" where a data transformation occurs. You can start

from the inputs, outputs or in the middle whichever is the

most ctvicus development for you. Insure flow of data goes

from left to right for ease of reading and avoid looping

hack to the left. If a loop appears necessary, duplicate

49

..

the process bubble that is lcoped to in order to keen the

data flow mov.ng right. Do not cross lines and defer naming

the bubbles until later. When all of the data flows are

connected then examine each bubble to determine if some data

flow occurs within a bubble to achieve -the bubble output.

If so, then break down the bubble into subprocssses and

create lines for the new data flows discovered. If your

working paper is getting flooded with lines at this point,

it may be tim- to consider a leveled DFD approach.

Basically with the leveled DFD the first sheet

of working paper contains the set of lines and bubbles that

were thought of on the first cut while subsequent sheets

contain the internal development of bubbles that were deter

mined to contain internal data flow. The leveled DFD syszem

enforces top-down data analysis for large systems which in

turn naturally induces modularity in system design develop-

ment. Figure 4.5 is an example of a first cut system DFD.

For convention purposes the bubble which spawned the

internal data flows will be called the parent and the

bubbles that result are called children. For numbering

clarificaticn a child is always given a unique number which

is prefixed by the parents bubble or process number. As a

correctness check, always be sure the inputs and outputs of

the children correspcnd to those of the parent and vice

versa. It is also wise to only expand one bubble at a time

to insure continuity of thought. Data bases and files

accessed or modified by a bubble should appear on the high

level diagram with the parant and the appropriate lower

l.vel diagram with the child. To be sure, upon further

analysis a child may develop children of its own and in this
way various levels of a system would be created. Figure 4.6

shows how one bubble of the HSCLCS was decomposed to form

new levels. Note that this particular example does not

balance parent and child inputs and outputs; so further

refinement is required to capture the correct data flow.

50

-~

IM" 12

U dc

- I. II
c 1 9

I 4at

I a
01 a1 '

I all I

taP.

I II

-~ 4 6

Ma

4. &4LSS~tmFo Darm

.4 4 51

Z -.

4 .2

z a
PiuI 4. ILSDcd uptDD

552

After your paper is filled with lines and

bubbles, you should label the data flows. Make sure the

names of the data flows are honest, concise and descrip-ive.

Be careful not to grcup disparate items together into one

data flow when they have no business being zrea--ed as a

whole. If the name is not very obvious, it is possible that
you need to r.partiticn or break d-wn the flow into levels.

The naming process is designed to help you catch errors In

your data analysis so be prepared to back up and reconsider

at this pcint.

After the data flows are appropriately label-.d,

it is time to label and number the process bubbles. Use
similar guidelines for naming the bubbles as you did for the

data ficws. Additionally,try to construct names with a

singular action verb and singular object. If you find your-

self caught using two verbs for one bubble, it may be time

to repartiticn.

After one iteration of the DFD process, a good

practice is to set it aside for awhile before begirning the

refinement process. The refinement process consists of

examining each bubble and data flow line to determine if

further decomposition is required. Information ccntinuity

is required on all refinements in that all incoming and

outgoing data flows in a refinement must have appeared on

the previous version. Figures 4.7 and 4.8 show a initial

decomposition of a process bubble and a subsequent refine-

ment. The iterative process continues until the analyst

feels that all bubbles and data flows have been compl tely

develcped or until further decompcition would not be of any

practical use in his opinion. Clearly, experience will best

teach the analyst when the bottom level is reached.
Furthermore, fin&. versions of DFD's from this stage of the

design methodology may be required to be modified during the

next phases of the methodology.

53

L

.-.-.

Examples cf DFD development for the HSCLCS are

* contained in Appendix A.

c. Using the DFD

The initial use of the DFD :s -o conver-t this

product into a Function Hierarchy via the transform/
Stransaction analysis technique described I n 'he next

* secticn. The Program Manager will use the DFD's to famil-

iarize himself with the basic data flow cf the design cf the

system graphically without having to trace the flow of data

through a lengthy alqorithm, the Broad Specifications, or

the final design. This initial graphic understanding of the

system to be managed will also allow the Program Manager to

more easily understand the final design itself and to be

able to quickly ccnceptualize th . flow of information

Srefered to in the design decisions documenta-ion.

The data flow analysis, completed in tho form of

data flow diagrams, will lay the corner s-one for the devel-
opment of the design. This process must be done carefully
to insure that the foundations for modularity and implicit

informaticn hiding are established from the beginning of the

system development process.

2. Transfo rmTransacticn Analsis

a. Def initions

"ransform/trans action analysis is an algorithmic

techrique f-,r developing a Hierarchy of Functions which is

dependent only on the structure of the input product, the

ata Flow Diagrams. As the method name implies, there are

only two high-level structural forms indigenous to data flow

diagrams: transform flow and transaction flow. The method
supposes that certain fundamental characteristics exist in

all scf-ware systems: data must be nput, manipulated, and

54

-C

i La

I CA

-- C

I Iz
I Ia

vi w

C- -c
.7 ISLC Dioa naeetI

LJC

4.~~a Q~~~

.. j IA

I II

I L&S

I~~L -j -

I UA

I IA
I Ia

Fi-~ 4. IICC i~a taae- F aieetCe

I 56

77 P. W-.. .

output. These characteristics are broad enough in natu_- to

make the technique widely applicable to many types of soft-

ware development. Specifically, the method is highly ccmpa-

-able with the develcpment of real-time syst=ms makiLng it

ideal for our purposes. The reader desiring further d-scus-

sion of the technique should ccnsult Pressman [Ref. 5].

Transform flow, our fundamintal system model for

all data flow, envisicns the system as inputinc and output-

ting data in an "external world" form and processing (trans-

forming) cf informaticn in an internal form. Trnsform flow

is necessary to accommodate both the user who must input and

interpret data in the external form and -he computer which

must process data in the internal form. Simply stated, if

the flow of information can be viewed over time as: (1) an

afferen- flow from the external representation of the inputs

to the internal representation; (2) a process flow wher :hz
internally represented data is manipulated to producq the

d- sired results; and (3) an efferent flow from the intarnal

representraticn to some appropriate external display for ths
information then transform flow is present. Figure 4.9

illustrates the transform ficw of information. Transform
flow, as a basic model for all software development, charac-

terizes systems very simply. They input data, change it to

an internal form, process it, change it to a suitable output

structure, and output it.
To solidify the above discussion, we must d-fine

afferent and afferent flow which is the key to the charac-

terizaticn cf transform flow. Afferent flow is information

flow along paths which cause the gradual transformation of

data from an external format to an, internal format. The

transformation can be viewed as a funneling of the infcira-
tion through external/internal interface translators toward

a central processing Fcint, a transform center. Efferent

flow is the flow of information outward from the transform

57

Io -~-~ 2. ->:-* *\ - ~ * .**-
.

EXT

I N
FI0 AE
R F EIM F F F

IA E L E L

I0 N NN T T
INT* PR__ _ _ _ _ __OW

I TIME

Figure 49 Transform Flow.

c-ant er through Jnterna1/extsL-na. interface translators to

the devices which will display the: results of thm processing

to the system user.
ansacticn flow i's characterized by a process,

called a transaction center, which takes an external impetus

and causes the data flow to be directead down one of several
paths emanating from the transaction center. The pa th ta ken

*is determined by the value of the -nput. FiJgura 4.10 shows
the generic form of a transaction zlw An ayvsaia

tion of transaction flow Is tc compare It wi-:h the standard

case statement. The case statement structure? corresponds to
*the transaction center, th e c3se 7ariJable value is equiva-

lent to the external impetus (input) , and the suhp=roc-=ss

58

J".

Pi i p

I IMPETUS

I (N -)

P(N) P N

II
I

Figure 4.10 Transaction Flow.

cald wtn executing the case stats-ment cor-esponds to the
action path taken in the Data Flow Diagram.

b. P--ocsdures: A Case Study

To present +-he tran sf o r/transa c- i" n ana lysis
ec h nique, a case study of the HSCLCS Disgiay Engaement

Module will be ued. Th,: . Data Flow Diagram petinent to -.he
case study i6s shown in F~gure 4.8. A g-3nszal -ule applicable
-o this analysis is tha-- he -zn t"' r zefnmn -~cs f

the Data Flow Diagrams must 5 ccmpl!s-ad bsfc- e commeanc'nq

59

,W,.),
, .I., . - . . - . - . .I., , . . .' , . . . , . . , , ' . - . ' . : . ' . ? . . : .. . ; : . . ; , . - - : , , . , . . - . . . , - . . - . . - , . . . , - . . - . - . . - .

the prccedure. Otberw ise, the proper struct ure cf he

function. Hierarchy cannot be assured. Th=- procdur_-

detailel below provides a tem~plate for a generi4c system. I n

some relatively simple developments, all of tsesteps m!%v

nct be needed, e.g. secondary flow analysis, an~d can.li -z i:e

* fcrs be omitted.

(1) flo! CharacteriLStigs. The first step of he

procedure is to dete mie the character isti4c f low ~ h

data. It ia possible for both types of flow to exist on i

* single diagram; this is the case for our ?xample. U-nder

these circumstances the dcminant :Elow Dat:ern must be dster-

mined. In the case study, the transactior. flow about the

bubble labeled "'Display En-gaqement Controller" appears to be

dominant.
(2) taki he LDiaqrm. Next t-hs Data Flow

rliagram :s annotated to shcw the various -Flcw bour'ar;.ss.
Because ths transaction flow is dominant , we w;.Il apply the

rules for marking the transaction flow first and look for

*the afferent/efferent boundaries to mark the transfcr:m flow

*-second. T he rul21e s for tr ns act ion analysis begin wit-h

*finding and isolating the transaction center. As t-hp !efi-

nition states, the transac-tion cent:er -:s that procedural
hble which ccntain -uLi. radally .ema:,-ati ng d at a

paths. Figure 4.11 shows the isolation of 1-he trarsactiJon

center for the case study. This i-dentificatlion of the major

flow v-ill ulti-mately develop the upper level1 modules on the
Function Hierarchy. To provide details for a good Hierarchy
Chrfurther refinement of the flow characteristics must

he performed. Since all of the secondary flow in the case

* study Is transform in nature, the next step is to locate the

transform centers. They are easily found by observing the

affarent flow into selected procedural bubbles and the efte-

rent flow cut of others. In the case study, the secondary

* flow on the left side of the transaction center is detai'led

60

*~~~~a Q

7*
-~~C < .J JL0i m

-0 -0 C

L.J- -J -. 5

Q. UC k. *c I.-

.5..

IU -fl
I Iz

0 CL. dc

* I I
I IC

0 -C-C I.

Figure 4.11 Isolation of the Transaction Center.

61

while cn the right side it is trivial (see Figure 4.12).

The right side is trivial because :hs flow boundaries ar- in

lowest terms: a single datum afferent flow; a slgle

processing bubble; and a single datum efferent flow. Thus,

one would expect the modular breakdown on the input side of

the hierarchy to be scmewhat more detailed than that on the

controller side. Later this will be shown to be the case.

(3) Hierarchy cf the Dominant Flow. Once the

Data Plow Diagram is appropriately marked, the first cut

hierarchy for the dominant flow is generated. The fact that

flow is the key to generating the hierarchy supports the

suppositicn that the structure built during twe data flow

analysis will be maintained. Both types of flow have

strictly mechanical means to arrive at the first cut hier-

archy. This is because of the way data flow diagrams are

partitioned when marked.

When the dominant flow is transform in

nature then the first-level factoring produces a two level

hierarchy. The upper level is a control module with a

• generic name chosen tc illustrate tha global function of the

procedure. The second level contains three generic ccr.trol

modules with the following functions: one coordinates the

afferent information, the second controls the processing,

and the third coordinates the efferent information. The

process bubbles controlled by the se three modules are

captured by the afferen t/processing/effer ent boundaries

marked on the Data Flow Diagrams.

Should the dominant flow be transaction in

- nature, the first-level factoring produces a three level

hierarchy. The upper level performs the same function as

its counterpart used in transform flow. The middle level

- consists of two controllers: .ne for con:rolling modules

• which handle the input flow to the transaction center and

cne for ccntrolling modules which handle -he individual

62

777 -

-0 - -C

(j CLIJ 0-
La ., ~ ,..

1- o

2C <

IA -C
- - ~-§i.~ - -

rn _ __

__4j________
_______________._ VI____________________

PiguW =11 Va)n heScnar l
63 -

to0

ENGAGEMENT. I

IINT DISPLAY
I SCALE
ICONTROLLER

I ,,
(S,-SCALE LG-SCALE

DISPLAY DISPLAYIISET-P SET-UP

I
II
II* ~ I

* ~ II

Figure 4.13 Dcainant Flow First Cut Hierarchy.

paths emanating from the transaction center. The bc-tom

level consists of a group of modules each corresponding to a

s-ngle data path out from the transaction cen-sr. Fiaure

4.13 shows the first cut hierarchy for the dominant trans-

action flow of the case study.
(4) Hierarch of Secondary Flows. The first

cuts of the secondary flows, which are handled next, are

performed in exactly the same manner as the dominant flow.

The only difference is that the top level module, the

ccntrcller, for secondary flow must be idenr-ified as some

module on the first cut dominant flow hierarchy. Because

the secondary flows are zarked in relaticn to the markings

of the dcainant flow and cannot cross alr-eady existing flow

64

' U,". v _. 2 . h...... .- .. . * . .. V.e. .- * *- . . - , - - -

C T I

I CCPT PROCESS OTUI INPUTS ENGAGNT

Figure 4.14 Secondary Flow First Cut Hierarchy.

boundarie-as, secondary flows are always encapsulate-d wit hi n
e-;t.her the dominant or another secondary flow. Therefore

the tcp level ccrtrcller of a secondary flow must map i,6nt o

some lower level module of the dominant flow's (or a
controlling secondary flow' s) first cut hierarchy. F iZdi-4ng

*this lower level module is easy; it is the one which
performs the labeled functiJon on the Data Flow Di1agram.
Fignre 4.14 shows the firs cut hierarchy for the secondary

flow.

9295)-Lv I Factorinq. Secondary factoring
is concerned with developing -the lowerT level modules in the

hierarchy. It is basically a mechanical process of oatn
modules which perform the same functions as their data flow

diacram bubbls counterparts. The bubbles contained w4thin
4. e !low bcundaries created by marking -,h= dia grams -are

rsguirsd to be mapped into modules subsirvient to the

conrcler or hatFaticular subflow ie. the affc-rent,

processing or cfern transForm flows or! the *npu- or

dispat-cher -:ransact--cn flows).

65

It is not mandatory to have a o r.-tc-one

mapping between bubbles and modules although the degr-e of

mechanicalness of the process is dependent upon this. This

step should be performed as mechanically as practical to

precluds loss of information due to premature refinement.

However, mapping strictly by mechanics without regard for

obvious simplifications fails to decrease thz complexi-y of

further factoring. Practical considerations dictate the

outcome of the second-level factoring. Figure 4. 15 shows

the second-level factoring for the case study. It was done

in a mechanical fashion so that the refinement techniques

discussed below could be more adequately shown.

(6) Refinement Heuristics. The first cut struc-

ture of the hierarchy diagram has many rough edges. The

smoothing process is not well defined; it applies a series

of heuristics to the Function Hierarchy to refine the system
s+ructure. These refinements are necessary to promote the

software principles discussed throughout the thesis. The-

following heuristics, offered by Pressman (Ref. 5], meet our

needs:

1. "Evaluate the preliminary softwaze design to reduce

coupling and improve cohesion." If a module encom-

passes multiple functions, the software structure

will suffer a loss of cohesion. Explosion of the

mcdule into a set of single-function modules regains

the cohesion. If a module has an unreascnably

ccmplex interface, coupling will increa.se. Implosion

of the function into the paren- module will simplify

-he interface. Note that implosion and explcsion

have oposite effects on coupling and cohesion. The

optimal balance between coupling and cohesion is the

goal and drives the mcdule refinements.

" 2. "Attempt to minimize structures with high fan-out;

strive for fan-in is depth increases." An example of

66

...........................

","'') - - . ; ,' .*.- ' "',.* '-**-.-**-.'' "*.,,*.".*. "*,* " ,.,.. -'-'-, - -" . , "."v': , - . . - ", . - ,

-jI

LLA

'C~hCL

I. -j LIS

M _j UaAlUC
wi O

z r.

CL z Iz ,
_________________________"__ ________________ _______________

Figure~~Xz I-C5 CopeeScn-eeIFcoigHeacy

<67 jCq

7.-.

a high fan-out structure is a tree. This ty.=e of

structure does not attempt t: abstract similar parts

frcm modules and make them subprccedures to a multi-

t rude of higher level modules. It is the-efore a

wasteful structure. Fan-in at a low level generally

indicates a well aostracted structure with singular

purpose modules.

* 3. "Evaluate module interfaces to reduce complexity and

to improve consistency." The paramecers passed to a

module must be simple and consistent with the fune-

ticn of the module. Otherwise low cohesion and

ccnfusion on the part of the module ussr will result.

If a complex interface is necessary to reasonably

perform the desired task than all the modules in the

immediate area should be reevaluated.

4. "Strive for single-entry, single exit modules,

avoiding pathological connections." This simply

warns us to develop modules which are entered at the

top and exitted at the bottom. Pathological connec-

ticns are branches intc or out from the middle of a

module. They must be religiously avoided.

(7) Refinement Process. The refinement heuris-

tics listed above fall under the general category of module

independence promoters. Seeking high cohesion and low

coupling by the implosion/explosion routine is aecessary in

varying degrees to gain this independence. The degree of

necessity is dependent upon the lavel of refinement of the

Data Flow Diagrams. As the DFD's capture more detail, the

number of correct, efficient Function Hierarchies decreases

because detail limits design options. Thus, as the set of

DFD' s approach Imaximum refinament the transform/transaction

analysis process approaches a fully mechanical algorithm.

But because the level of refineaet of the Data Flcw

68

. " . . ." . 4 "/ • ". • -

Diagrams is realistically (and desirably for comp.exity

reduction reasons) rough, heuristics are needed to refins

the Hierarchy Chart. As indicated, these heuristic proce-
dures are not mechanical. They rely on common sense

decisions by the user to transform the current structure to

a form which simplifies the design. The final arbiter is

human judgement.

In the case study, several -refinerents can

be made. Refer to Figures 4.15 and 4.16 throughcut th_

narrative. First, to aid abst'rac:ion and control coupling

all references to data in databases will be through a gensr-

alized data interface, an abstract database management

system (EHMS). Thus, the two database manager moduls have

been replaced on the final hierarchy by a generic ccntrcller

for all calls to databases. It is beyond the scope of this

discussion to refine the DEMS module. Next, the "Accept

Lisplay Engagement Command" module, which performs no
processing, was for simplicity reasons imploded intc the

"Accept Inputs" module. Third, the processing of the

"Process Inputs" module, which is done by the "Accept

Inputs" module, and the processing of ths "Output Engagement

Data" module, which consists of only a parameter pass, are

not necessary to control cohesion. This type of redundancy

is common to secondary flow analysis. Consequently, they

were :mplcded into the "Input Controller" module. Next,

because the function of the "Input Ccntroller" and the

"Accept Inputs" modules are identical, t he structure can be

simplified to a single module to -educe coupling with no
" loss of cohesion. Note that the final name chosen for this

second level module was "Prccess Inputs" rather than "Input

Ccntrcller" or "Accept Inputs". This is because the name
"Process Inputs" is the mcst descriptive of these three

candidate names for the module. The final modificaticn to

the design, that of abstracting similar data from the two

69

~~~~. .. n n. n. . . . . . . . . . . . . . .
-
. . . .. . ... . * . ... . • . . 4 - -" i-[



7

CL 40 I-

iC~hJ~IC.CL
" uW

I LU

I IA
CLis

-K L



scaling modules, attempts to "fan-in" the structure. It is
shown as a dotted procedure on Figure 4.16 to show that

factoring is possible but not assured.

3. Mcdular Develgpment

Modular develcpment as a formalized procedure is a

technique for transforming the properties of the Hierarchy

Chart structure into Module Descriptions. All of the data

required tc define the modules in very general tr-r-ms is

* contained in the structure cf the Function Hierarchy. The

transformation, while seemingly subtle in nature, is a very

important step in the methodology. It provides an elegant

way of changing the system specifications from their totally

graphic fcrm into a short narrativa form. This trans.tion

is a necessary first step toward using an SDL, an ADA srL in

our case, to further design the system.

The compcnents of a Module Description capture the

necessary details of modules commensurate wi-_h their high-

level position in the design refinement process. While the

actual format of the Module Descriptions is not critical,

the contents contained within them is. The ccmponents

provide a complete description of the module for this stage

of the design. The definitions of each of the Mcdule

Description parts are listed below:

1. Module Name. This name must be the same as the one

on the corresponding module of the Function

Hierarchy.

2. Module Function. This narratLve provides the purpose

of the module in broad terms. It should reveal a

singular purpose in order to meet the criteria of a

module.

3. Supervisory Mcdules. These are the modules that call

this module. It is the interface w-h -the supervi-

sory modules wbich is explained below.

71



4. Module Interface (Parametars) . Here the ADA

SDI-styled parameters are listed and further

explained in a shcrt narrative. rhe narrative

reveals the basic structure for the data type of the

parameters. The interface is a bridae betwe.n this

module and all of its supervisory modules.

5. Sutordinate Modules. These are the modules called

within the bcdy of this module. Their interface

definitions are handled by the subordinate module's

interface.

6. Design Decisicn Encapsulation. This is the sinqular

decision which the module hides within its body. Tt

must be a singular decision to meet Parnas's criteria

for a module. As the module is further develcped,

additional lcwer level decisions will usually be

necessary. To maintain the Parnas singularity

requirement, these decisions must also be encap-

sualted in their own procedural structure. Thus, the

Hierarchy Chart is a dynamic product being continu-

ally refined as design questions arise and decisions

are made to accommodate them.

Figure 4.17 shows a recommended style for mcdule

descripticns. The example is one of the modules developed

in the case study, T HEATANALYS ISDISPLAY. Viewing lodule

Descripticns as the first step of the design in the SDL and

therefore the first products of a step-wise refinement

process for the system design, we present the descripticns
in ADA SDL comment fcrm. Because the Module Descriptions

contain the necessary details to fully define the modules,

- they can he used as the user interface in the AD& SDL

design.

The modules should be developed independently by

first producing the Module Descriptions in separate files

72
,"%.................................



-
'  

-- - ,- C -- , .- -.-' .- ' ~ -t ; "-" " - --', . . . , - . . . , , . . . , , . . i.

.- | - 1 **

:% Module: THREAT ANALYSIS DISPLAY **

"*" - Module Function: *
To query the database management sys- *I - tern for the data requirad to display *
the threat data on the HSCLCS console *I -** *

-** supervisor Modules: **
- PROCES IN PUTSI -** **
- Mcdule Interface (Parameters) : **

I -** - Threat: out Threat Type *
(This is a buffer for holding thei current threat data suitably for-
matted so that the task THREAT in *

I -** the package DISPLAY can put -he *
data to the CPT.)

-* Subordinate Modules: *
DATABASEM ANAGEMENT SYSTEM *

Desion Decision Encapsulated: **I -i*he interface with the supervisory **
I -** module will contain zhe structures in *I -* CRT 2rid coordinates compatable with

the CRT used. This modu±e is there-
1 - fore an abstract interface between the *

data positions contained in the data- *
bases and the actual CRT positions. ::

Figure 4.17 Sample module Description.

and then writing the SDL "code" apperded to the Module

Descripticns. This accomplishes two goals. First, it

preserves module documentation in its most logical place and

most desirable form. S-cond, it provides physical encapsu-

lation of the module encouraging its independent use in scme

other system. This is an initial step toward programming-

in-the-large.

73



4. Transition tc ADA Desiqn

The transiticr to ADA design function completes th,"

system design. Using the method for segregating and docu-

menting the module Descriptions explained i the last
section, the transition builds the narrative structure into

an ADA-ccmpilable System Design Language "program". It

incorporates the stepwise refinement approach of detail

* abstracticn thrcughout the process. The steps involved in
- this functicn are simple to comprehend and follow fcr those

moderately versed in the stepwise refinement technique.

Stepwise refinement is a well-known concept in t-

software engneering community. It is not universally

accepted, however, as the all-encompassing detail abstrac-

tion me-.hcdology. Because it is very useful at this point

in our methodology, we have endorsed it. In a nutshell,

stepwise refinement is a decomposition procedure which

refines a previous, higher-level view of a module. It is

different from a similar technique, top-down design, because

unlike the top-down method, stepwise refinement is limited

to developing only structured constructs within modules.

Before proceding with the refinement process, the

Data Flow Diagrams, Module Hierarchy, and Mcdule

Descriptions must be reviewed to identify potential modules

for packaging and tc look a- the concurrency profile (best

shown by the DFD's) of the system. The packaging criteria
consists of four general cat3gories of applications for

packages each with multiple subcategories. The broad appli-

cations are: named ccllecticns of declarations; groups of

related program units; abstract data types; and abstract

state machines. Botch [Ref. 8] discusses these criteria in

detail. Applying these criteria to the case study, notice

that the three display modules along with the

"PROCESSINPUTS" module in Figure 4. 16 would be candidates

74

* ..".." .... "..".2.......-'. .' . "" """. .".- "" -- . ."- .-.. .. .'- . .. .. . ...



for ADA packaging. This is because by packagirg hesi

modules the required inputs can be hidden from the

"DISPLAYENGAGEMENT" module thus ralizing both a grouping

of related program units and an abstract state machine. The

criteria fcr ADA tasks alsc serve four applications areas:

concurrent actions; routing messages; managing shared

resources; and interrupt handling. Again B:och [Ref. 8]

explains these applications in detail. Returnina to the

case study, these three display modules perform functions

independently of each other as shown on Figure 4.8, the DFD,

(i.e. they do nct operate on the same input parameters) and

consequently are candidates for concurrency control using

the ArA task mechanism.

The procedures of the stepwise refinement are not

particularly rigid. As previously stated, the main idea is

to deccmpose mcdules into structured constructs. The

following steps form our methodology for comple-ing ths

design.

1. Write the procedure, package, function, task, -tc.

specification including all of its parameters.

2. Write the body name cf the procedure, package, func-

tion, task, etc. with its parameters, a short narra-

tive of the basic flcw, and the appropriate end

statement.

3. Replace the narrative of the body by the high level

constructs of the algorithm.

4. Continue ref ining the algorithm by adding detail

until the desired purpose is clear. Give no more

detail than necessary to meet the above criteria.

5. If during this process the need for design decisions

arises, defer the decision by creating a subordinate

mcdule specifying only its iaterface.

6. Recheck the interfaces for clarity, simplicity, and

cc oplet eness.

75



7. Determine the design decision encapsulated in the

module and check that it is entered in the appro-

priate Module Description.

Fgure 4.*18 shows the 11THR EAT ANALYS IS DIS PLAY"

Itask THREAT ANALYSIS DISPLAY*
with tATABASE MANAGENENT SYSIEM;

Itask bcd; rHREAT ANALYSI'T DISPLAY i.s
I type THE DBMS -is

recorl
ISHIP NAME: - these types are notI

SHIP-CLASS: - pertinent to the case
VEAPDNS : : study and therefore

be B~ ECH HUIPMENT: -not developed
ENGXG MENT PLAN:

end record-
END-FIZE 'BOOLEANI H BS
ND FILE :=false

(hlRnot END HL)lo
IT EAT DB MUR RECORD FROM THREAT DBr END FILE);deveto rthe RT coofdina~es foz-thasdipy
I~ consistent with the known coordinates of the
j~ actual threat. U the names and coordinates I
I endin the buffer, THRtEAT.

edloop;
end THEEAT ANALYS IS DISP LAY;

Figure 4. 18 Sample Module Design in AD& SDL.

*design which completes the case study for this module.

*Stepwise refinement was used both to develop the specifica-
tions of the task and the flow in the task body. Because

all of tte specifications were accurate and the interface
wel-defined, this step in the mtoooy ws esl

performed.

5. Specification Reiemn

Cne of the primary goals of the methodology is to

roue btter specificaticns and at this point in the

76

I.%



.............................

process the xisting specifications are updated by incorpo-

r rating the documented design decisions. Also if certain

decisions were deferred until now such as excepDtiorn

handling, it is the time tc include them in the specifica-

tions. On the first iteraticn of the methodology the input

for the update process would be the Broad Specifications.

We are assuming that the Broad Specifications are

well structured and in accordance with current directives.

However, at each review pcint of the specificaticns they
should be screened for ambiguity, confusing description,

overspecification, orthogonality, and completeness. The

precedinq processes in the methodology will itera-ively

ensu .re ccmpleteness, but the other undesireable attributes
must be found editorially. We will not belabor the reader

with definitiors of the attributes but they can be found in

(Ref. 7].
A sample set of scftwars3 specifications for the

HSCLCS is givsn in Appendix F. These specificaticns were

the product of a first iteration cf the methodology for the

system and, if approved by a Program lianager, would be the

final refined software specifications.

Although this section of the methodology appears

short in ccmparison to the long algorithms of the other

methodology components, the review of the specifications is

extremely important and should be given an equal if not

greater segment of the methodology time. These specifica-

tions will reflect the principleS incorporated into the

other methodology products only if this updating process is

done with care.

C. METBCDOICGY EVALUITION

In the first section of this chapter we listed and

discussed the principles and goals that the methodology was

77

" .. '....



designed to prcdrce. In this section we will show how the

products produced conform to the guidelines specified.

To begin with, all of the products were created using
concrete algorithms which were presen-ed in a manner that a

Program Manager could easily understand. Although the

processes did include soae heuristics, the thotughm process

behind the heuristics was explained thorouqhly.

Each of the products exhibit logical design flow at all

lsvels of development. The s:epwise refine.ment methods in

each phase cf the methodology insured that in no way did a

cart ever get in front of a horse. From data flow diagrams

to design to specificatons, system design decisions wenre

deferred until the last possible moment in order to maintain
the maximum degree cf flexiblility and to enforce abstrac-

tion. This logical design coupled with the algorithmic

methods along with emphasis on simplicity and structure in

each of the products gives the methodology one of the

primary goals: understandability.

The four basic principles (i.e. modularity, abstracticn,

independence, and hiding) that were enforced during -he

phases of system development all basically contribute to the

modifiability and maintainability goals of the methcdology.
Modularity is the first of these principlqs and the entire

system development process steered thq analyst toward

abstracting common characteristics of the system into

modules. The abstraction process kept details of design at

the lowest possible level. By hiding design decisions
within modules, a design decision change can easily be

incorporated into each of the products by simply changing

one module (ideally). Furthermore since there exists a

fairly simple mapping between products, a revision could be

implemented easily across the board. Since independence was

also one of the principles, s-trong cchesion and weak

coupling of modules also enhances r-ela iv -'ly effortless

78 p

78

j

• ;+ "+"+ .-' . -. +". .' ' . . " ." " . . . ' " " " " + + • " " ++' ' , ' " " + "" ' + '" " '.. . "



.1

system scftware modification. Clearly, the software rsv-l-

* oped is easily modified and consequently highly

maintainable.

- The iterative nature of the methodology ensures that the

products will be reliable. The inherent design error

checking of the process allows the designer tc be confident

that the design will meet all previously required specifica-

tions and that the refined specifications produced by the

methodolccy effectively encompass all design parameters.

Tc simply state that the major principles used to

develcp the individual products insures that the desired

characteristics are passed from phase to phase may no- be

enough. Abstraction and completeness are natural byproducts

of the data flow analysis methods of DeMarco, but do these

traits prcliferate through the Pressman and Booch module. and

design development processes? Does the modularity and inde-
pendence gained from Pressman carry over to augment the

S4hiding principle emphasized by Booch? The answers are

emphatic affirmatives based on the iterative nature of the

principle inclusion process of the methodology.

Upon clcse examination it is easy to see that the prin-

ciple inclusion process is additive in nature. Abstraction

and completeness are qualities enforced in the derivation of
the Data Flow Diagrams. Since these characteristics are

imbedded in the DFD's, which form the basis for the Pressman

transaction analysis phase, they are necessarily a charac-
ter-stic cf that phase also. Additionally, modularity and

independencp are emphasized on top of -he abstracted,
complete fcundation. Similarly, the characteristics brought

forward from Pressman to the design development of Booch are

added to information hiding which is stressed in that phase.

In this way we are guaranteed that the ultimate products

2 possess the desired traits. I erat'v refinement of the

processes then solidifies the placement of th pri.c 4p2es.

79

4

. . . .- I



An evaluation of the methodology would not be ccmplet=
without sme comment on ADA as the system design language,

however, no in-depth analysis of ADA will be given because

it is outside the scope of this thesis. Besides being the

DOD language of the future, ADA, with its package and task

mechanisms, is especially suited zo enforce the information

hiding principle that is the major emphasis of the Booch

phase of the methodology. Withcut such a language, the

implementation of this principle would be tedious if no:

practically impossible. In short, ADA is no- just used by

the methcdology; without :it the methCdolgy wCuld T.c-: be

complete.

Even though we have shown that this methodology will be

an effective tool for the Program Manager, it must be

stressed that if all of the guidelines and principles are

not adhered to rigidly thoughout each phase of the process

then the products may not reflect :he qualities specified by
the goals. To use simply modularity without hiding in mind

could result in software that is not easily modifiable while

not applying all of the rules of abstraction could yield a

very inefficient design. The major distinguishing trait of

this methodology from others such as PSL/PSA and SADT is

that the various software engineering techniques of Booch,

De Mazcc, Pressman, and Parras have been blended to form a

process that generates products that can begin to cut the

cost of software maintenance and development. To employ the

process you must be well schooled in the basic principles.

It is apparent that the goals of the methodology have

been achieved from the previous discussion, but only through

implementation of the process can it be evaluated. The only

readily obvious improvement upon the methodology would be to

automate the process which is well within the realm of

possibility due to the algorithmic nature of the method-

ology. The methodclogy was used to produce the design

80

l H l d • i i i i,= . ..,..... . ." , _- .• ".- .•. . '. . ". ... . .. "-.



.

products for the HSCLCS were are -ncluded in -.he appen'.lc-s.

For this size project the method-ology appeared excellent.

(Hcwever, the uiplexentors found that In cr eas ed e xpe ri-enc e

w 4ith the phases produced r-esults whiJCh more cltE-Gly adhere4A

*to the gcals and principles. Furher proof will be in -:he

* pudding.



V. CONCLUSIONS

Thegoa o ths hesis was to develop a system -.c make

*the Program Manager's task of monitocring software develcp-

ment of embedded weapons systems lass complex by providing

h him with comprehensible, easy to use management tools. In

the previous chapter we have outlined and evaluated a meth-

c dology which produces thesa managamen. tools, and

appendices a.-9 samples of the products of the methodology.

The methcdology was simple to :.mplqment and produced good,

*complete system softwae specif icat ions that were underc
standable and well documented. A r. q xpla nat ion of the

*Program Manager's procedure in utilizing t-hese software

* development tools remains.

The Program Manager will receive broad software sp, cifi-

*cations cn which he will conduct a first cut evaluation

prior- to giving them to a Contract Support Service (CSS) for
generation cf refined specificatiosuigte ehdlg

*of this thesis. After a specification refinement, the

Program Manager reviews the m~thod:olcgy -,roducts and feeds

the Refinred Specifications back to the CSS if necessary for

another iteration of the proce-ss of refinement. This prccess

con'4 nuet unt-l optiffal SpeCiiications are achieved In the
opinior of the Program Manager and his st af f. A close

Iworking relationship between CSS and Program larager can

acc-allerate the process conside-rably. Specificatilons of

hi4gha gqualiy is t he mo s, visibla Drcduct- o f ' h e pzccess

external to the Program Manager's office, but --he hter

products are equally important to r-he management of a soft-

ware system.

The Data Flow Fiaarams, Module Dascr.L 4ions, and design

wih douetain are of high value. '.he Data Flow

h'I2



ElDagrams provide an easy-tc-read graphic r-apresenta-:4 o' o _

the system. The Mcdul~ Descriptions an.d the firal ADA

r esign produced give further simple, understandable docu-

men-ts that a Program manager and sspecially his successor

*(relief) can use to grasp the details of the software. The

Documented Design Decisions are even more important -c -ths

pass-down evolution that so often. in.rterrupts thez continuityv

*of a system's development. A new Program Manager can not

*only see the design with relative ease, but he ncw has a

*histcrv of how and why decisions wiere made that led to the

des ig n. Corporate knowledge whi*ch has historically been the

most frequentI casualty of the turnover process can therefore

be a survivor. The increased insight into the design of the

* proposed system also puts the Prog::am Manager- into a b-atter

pc~;ition to evaluate the ultimate system contr:ac-tor's deasign

* proposals.
Another byproduct of better specificazions is the poten-

*tial for overall system develo-pment costs to be lowered. By

refining the specification~s "up front", there is a reduced

probability that the cont-ractor Will discover omitted it-ems
in the specifications that require costly chancre orders to

integrate the items into the system. Since change ordIers

allow contractors to adjust the cost of a system above the

o or iginal1 bid, reducing the number of changes m in 4i ze s

*overall. costs. Further inthe cost-s lifecycle area 4-3 the

*capital spent on the mai-Antenance of a systam once itis

implemnented. Modif ication of software generated by t his

methodoloay Is relatively inexpensive as discussed i n th Ie

previcus chapter. In most cases changss in :-equi-*6reaomt s
would not require a complee system redesign but only rede-

-4sign of the module affected. Maia:nance cost s would then

be obviously lowered.

Ths most -ntangible ben~efi*t gained 'From -he met-4hodology

* ~~~s the econ, my of effr ane ihtth rga M.~r

83



cffice. The algorithmic style of the methodology and the

uniformity of the products provide guidelines for the soft-

ware development. The lack of an adequate institutionalized
procedure for software development organization in the past

has caused effort tc be wasted performing ron-prcductive

tasks. Therefore, the increased efficiency due to standard

develcrment procedures can be substantial.

Softwar_ development, as mentioned before, is but a mere

fraction cf the total effort needed to realize an embedded
system in -.he fleet. However, the escalating cost of soft-
ware makes _ contribute an inordinate amoun -o +he total
sstem costs including system maintenance. It is therefore

imperative that the best software engineering techniques be
used to reduce the exponential growth of development and

maintenance expense and to ensure the Program Manager's task
has mirimum complexity. The methodology promulgated by this

thesis is a major step in developing standardized management

procedures for software development that will reduce costs

and :;rovide more maintainable weapons systems to the fleet.

8r
8L4

, LIlll ',v a'-..-,,--,,- - ,,- ., .. . . . ., . , , . . . -



APPENDIX A

HSCLCS DATA FLOW DIAGRAMS

This azpendix contains t he HSCL CS Data Flow Diagrams

.from [Ref. 11. This set of diagrams is by no means complete

and is -:rov-*ded as a sample methodology product. The same

caveat a-pli-es to each of the appendicss.

85

LAJ



SOURCE TRANSFORMATION SINK

HARPOON LAUNCHER
WO Ip AND

OPERATOR MISSILE

MANUAL
DATA
INPU

SHIP LAUNCHER MISSILE ORDER

I PARAMETER AND
ENVIRONMENTAL DATA. HSCLCS

I fO

I OPERATOR DISPLAY

LAUNCHERHARPOON

41SSILEOPERATOR

I LAUNCHER
I MISSILE
I FEEDBACK

Figure A..1 sc~esn Diagram.

68



C.- r --
.......... . rI rrrn

-1
-1

I

_______- -- -fl
I I

I I

* . I I
* I I

I j
* I I

I I5: I
I I

I I
I

I I

I I 1

* 1 * it I
II I
I I
I - .-

I -" I I

I
I I
I I

-% I I
I

I I
r. I I
N I
F. I II __ _ _ I
hi Figure 1.2 Sysreul oTerview DFD.

137

* .*. -. -... . *. *. **. * . . . . . *



_ - -- 1
I I
I I
I I

I I
I I..
* bi

a I

I I
I I
I I
I a I

- . I I

'C K

I I

I I
I I

_______ I
S.'

* Figure 1.3 Cauplete Manual Process Data Flow Diagram.

88

-.----...... *5*~**~*~ .5.



*5~*~%. S. 
-~ -- - S 

.

*5

----- 

---

F

I
I

-. 
I 

~*

I 
=

.5- 

-

x -
0

*.~t.5. 1 
-I S

I 

1

2
5.' 

I
5555% 

I

5-- I I
I

I .

F II

I 

)

Figu:e A.L& ~pdat~ Track Da~a Base DFD.

89

. - . . .

. . . . . .................... 

.
................................................

S 

S.............- 

......
*5-

5 5 . .................... 

--
~ 

~. ~



'4

I -- I
- II II I

- I I

- 1 1 '2
I I a

* I
I I 4

I 4 1I I I
U a .~

a 4 A I

I. I
a. II I I

a

I I
0201 2 1

I I

* I I
I I
I I

I I

* I

I I
I I

___________________________________________________________________________ _________________________ _____________________

Figure A.5 Complete ConTert Environinantal Data DED.

90

r.
LI
L

~a ~ ~ *~ -* **...-. -

........................-..-. *.: ...................



I---- ~~~~1

I I
I I

- - I I
I I

I ~.- I I
I I

0I .,.' I
I I

I I

I I* I III
I

.1
I I
I .~1 I
I p.

I I
- I

I I

I
I II I
II I
I I
I I

a I

-- I II ________________________ ________

.5-n.

Figure 1.6 Decode Qu!p~at DPD.
I

~5 
91

.5-

* ............. J.... :.............



0

r - - - --

I I
I It

i I
I II I
I II I

I I

I I

I I

I I
I I
I I

- - I
-iI 1-

I I

I-. IF I I
I ______________________________________________________________

I' ____________________________ - - -

Figure A.7 Plan Engagement DFD.

92



AP ENIX

HSCLCS HIERARCHY CHARTS

* .. T haarE are the HSCLCS Hierarchy cliarts from [Ref. 2].

93



..

' _ ti :

Iiur .I Frst/rr lrnfr Anlss

I /1 9

I-I I ,' ',',i,',,'--, ,° '.2,, ... :% L. ,% ":- r -'' " - : - -. -" - ". ' - ' - _



77-7

7 F7I F

Liv

FiusB Eeieet o rnfrHAa1ss
I / ~ 95



-K49S 079 A PROGRAM NARNRGER'S METHODOLOGY FOR DEVELOPING 2/2
STRUCTURED DESIGN IN EMBEDDED MEAPONS SYSTENS(U) NAYRL
POSTGRADUATE SCHOOL MONTEREY CA J I RANSBOTHRM ET AL.

UMLSIIDDEC 81 F/G 9/2 N

mhhEEMhMhhMhEE
MhEEEEMhhEMhEI
EMEOOEEh



'I.?

ii

-- *22

1111125 Jill1 14 .6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURE AU OF STANOAROS -63 -A

'-s ,

, ,A

?,',.

• . ., " . ..-. ..- , .-'-. - ..-.. ..-.-.'. . .,i. -. -- .. .
- . , - u... ,a~~ a . . , ._ ,. m . " ., - , ., . a. . , .A .. ,. ., ,,. .... * . . .. . . .. ..



II I
I r* ~ I

Fiur B. Proes Iau

I 9

I

I

* ~ I

I
I

!1
I

i
I| -

I I
Iiue t rcssIpt

I 16

* I I



-C = - 4II
2 ?A

-Q. -I I

a (A Z

I. I
-Ct

1d 1%-

PiueB Ics naeet

9 197



.1

- -_______I )

'A I
.p.

1
* I--

I 5a.
In'-

I 
4

I
I
I
I

S

I
____~1

* Figure D.5 Process Display.

98

* qS~V ' - ~ ~ *S~~~: ~ *.~ *.*'? ? *.* ~.* ~.- .* *.- ~ ..



I

II

I I
IiueB6Po-amDsg ~ .e

I I9

%I I "% " .° -.% ',. % .% ,% ' " o - . . ...'. *- *,. , . . -., . . . . .
a' I• , , o .I. , , -, , . . -



I q

IL
I

I I

* I
* I
I;

I I

Fi!gure B.7 Tr~ansiLti:on Structure ofe Filgure B.6.

kid 100

N ,

.
NOI



II
I

* I

I
--. 

.. __ .I

* *igueB8 
& o ahS~cueo ~ c aaBs aa

S..0I

'S I.'. .P J _,'r IIt a% . - .'* = °,'L " " ," ' ° ' . " ":- - -- °e' " . - ''

I * ! ! ! m i nl il munU l ll l n• 
-n 

,...-



I

* ; I

. 1
1 - I
• 1 I

. I 
DATABASE

I MANAGER

" II
I

3
I -"COWVERT
: -I 1ENVIRONMENTAL 1~DATA

* I

I I

Figure B.9 Iction path of Envi:onmental Data Base Manager.
102



5.-

5. I

I

11
* I

I

* I
'.4;eB 0 loinP ho DslTangr

a 0)

* Iq j . I . a ° . . l . ° . . • . . . . , . . ..
*em ,- I' "I, q , , , . .. 4 - ". ". ' ' - , . . . . . . . . ," " ' ' %

-S ., = . = . , . . o%' ' . . . . . ,, . . . . , . . . . .' . .; . . .



I I
I I

I II
II I

6-4urn 
-e

.-- 4 flu.-.

I 0

p 1
I I

I
I I

I I
I I* I I

-p 1 1
I

* I t
- II I
* I

I
* I
* 1
* I

104 -_________

.6 Figure 5.11 Action Path of Engagement Hanager.

S.



z S
I ril

10



%.1

kEPEN DI- C

HSCLCS MODULE DESCRIPTIONS

This appendix contain descriptions of the thirty ona
modules of the HSCLCS from [Ref. 1].

S1- 0 Control
2- 1 Process Input
3 - 1.1 Ship Parameter Data Base Manager
4 - 1.2 Environmantal Data Base Manager
5 - 1.3 Threat Data Base Manager
6 - 2 Convert Coordinates
7 - 2.1 Type Track

* 8 - 2.1.1 Delete Track
- 2.1.2 Update Track
10 21.2. C arse and Speed Update

11- 2.1.2.2 Bearing, Range, and Position Update
12- 2.1.3 Add Track
13- 3.1 Launcher and Missile Assignment
14- 3.1.2 Launcher and Missile Status
15- 3.2 Plan Engagement
16- 3.2.1 Plan Engagement Data Base Manager
17- 3.2.2 Engagement Data
18- 3.2.2.1 Threat Data
19- 1.2.1 Probability of Acquisition
20- 3.2.3.1 Uncertainty Ellipse
21- 4 Display
22- 4.1 Menu Dlsplay
23- 4.2 Launcher an Missile Status Display
24- 4.3 Environmental Display
25- 4. Engagement Display
26- 4.4.1 Threat Pisplay
27- 4.4.2 Automatic Engagement Display28- 4.4.2.1 Graphics Display
29- 4.4.3 Manual Engagement Display

0- .5 Shp Pa amter Display4.6 TraCk Dlsplay

106

.4.



-. .. . . . . . . . . . . . . . . ..... . . ..-. ..' " . , -. t6 °4. -- J - • . . . .. o. . o .

1. Nodule Name: CONTSOL, NUMBER 0

2. Mcduie function: Tbis modul, calls all other modules
and determines the program flow.

3. Supervisory mcdules: None

4. module intarface(parameters):

. 5. Subordinate Modules: Process Input
Launcher-Missile Assignment
Plan Engagement
Dis play

6. Design decisicn encapsulated:

1. Module Name: PROCESS INPUT, NUMBER 1

2. Module function: Selects subordinate module to update
ccrrespcnding data basss.

3. Supervisory modules: Control

4. Mcdule inter face (para meters):

5. Subordinate Modules: Ship parameter Data Base Manager
Environmental Data Base Manager
Convert CoordinatesThreat Data base Manager

6. Desian decision encapsulated:

1. Module Name: SHIP PARAMETER DATA BASE MANAGER,
NUMBEE 1.1

2. Module function:Update the Ship Parameter Data Base
by either manual or automated means.

3. Superviscry modules: Process Input
4. Module interface(parameters):

5. Sutc:-dinate Modules: None

6. Desicn d.cision encapsulated:

107

.J...L .. .. q-U - -. *... . . .. . . . . . .



1. Module Name: ENVIECNMENTAL DATA BASE MANAGER, NUMBER 1.2

2. Module function: Update the Environmental Data Base by
either manual or aatomated means.

3. Superviscrv modules: Process Input

4. Module interface (parameters):

5. Sutcmdinate Modules: None

6. Desiin decision encapsulated:

1. Module Name: THREIT DATA BASE MANAGER, NUMBER 1.3

2. Module functicn:Update the Threat Data Bass bi either
manual means or through use of a
standard chip that can be periodically

daed an sn to all ships with
HRP60N capabillity.

3. Supervi!sory modules: Process Input

4. Module interface (parameters):

5. Subordinate Modules: None

6. Design decision encapsulated:

1. Module Name: CONVERT COORDINATES, NUMBER 2

2. module funztion:To convert all the inputs to update track
data to common coordinates. The inputs

ugipuent, or froom an wNTDS .ink from
o her platforms.

3. SupervisorY modules: Process Input

41. Module intarf ace (parameters):

5. Subordi4nate Modules: Type Track

6. Desiin decision encapsulated:

108



1. Module Name: TYPE TRACK, NUMBER 2.1

2. Module functicn:TIpl 1 rack J terminai 4f -he :aqk is to
b otetd ptie ata base, adq d 0c
th) l1a base : some paramefe~s cf anS:stinq rack are o be aired. These
actions are psrfz_:md by selec-ing the
aprropriate suborlniata molulz=.

3. Supervisory modules: Convqrt Co::,.-a-es

4. Module interface(paramoe_-s) :

5. Subordinate Modules: Do4,-4 tr.a:k
Ugate ," a:kAi "rick;

6. Desiqn d-cision encapsula-e1:

1. Module Name: DELETE TRACK, NUMBER 2.1.1

2. Module function:Tc eliminate tracks from the data base
that the operat:r dstermines ar. no
lcnger useful.

3. Suervisory modules: Type Track

4. Module interface(parameters):

5. Subordinate Modules: Track Data Base Manager
6. Design decision encapsula-ed:

1. Medule Name: UPDATE TRACK, NUMBER 2.1.2
2. Module function:Tc uVdate the information contained in

tte Track Data Base.

3. Supervisory modules: Type Track

4. Module interface(parameters):

5. Subordinate Modules: Course and Speed
Bearing and range

6. Design decision encapsulats:

109

J



1. Modulei Name: COURSE AND SPE~r UPDATE, NUMBER 2.1.2.1

2. Module function: 79 update the course and speid infor-ti.on on each track contai.~ inth
Track Data Base.

- 3. Supervisory modules: update Track
* 4. Mo dule Inter face (para maters):

5. Subordinate Modules: Track Data Base Manager

* 6. Design decision encapsulated:

1. Module Name: BEARING RANGE AND POSITION UPDATE,
NUMBER 1.1.2.2

2. 11cdule function: 'Ic update the b~ar .q/a and pos44t-on
(Lat-itude/Lonvitudej1Vnf~rmat ion on
each track in the Track Data Base.

3. Suprvisorv modules: Updats Track

4. Module interf ace (parameters):

5. Sutordinate Mdules: Track Data Base Manager

6. Design decision encapsulated:

1. Module Name: ADD TEACK, NUMBER 2.1.3
2. Module function: To allow new tracks to be put irto the

Track Data Base.

3. Supervisory modules: Type Track

4. Module interf ace (parameters):

6 5. Subordinate Modules: Track Data Base Manager-

6. Desian decision encapsulated:

110



.'.

1. Module Name: LAUNCHER AND MISSILE ASSIGNMENT, 3.1

2. Module function: Allow the operator to bypass the
engageipent plannin automatic
select ion of missile cell
and simply select and launch the
missile manually.

3. Supervisorv modules: Control

4. Module interface(parameters):

5. Subordinate Modules: Launcher and Missile Status

6. Design decision encapsulated:

1. Module Name: LAUNCHER AND MISSILE STATUS, NUMBER 3.1.2

2. Module function: Ic provide current information cn what
launchers (port - starboard) are ready
tc fire and which and what types
missiles are ready to fire.

3. Supervisory modules: Launcher Bissile Assignment
Engagement Data

4. Module interface(parameters):

5. Subordinate Modules: None

6. Design decision encapsulated:

1. Module Name: PLAN ENGAGEMENT, NUMBER 3.2

2. Module function: To deter;mine the optimum engaguent plan
fcr a given target.

3. Supervisory modules: Control

7. Module interface (parameters):

5. Subordinate Modules: Plan Engagement Data Base Manager
En agement Data
Probability of Acquisition

6. Design decision encapsulated:

I.o

- ..., -% . ° ,. . . •.° .. °- . . . . . .' " ' ' "," " ' ' " ": " " : "' ' ' " '" " " e : • ' " " " "'" " " *" "" "" " ' ' " , • , -." , " .. -."11"1" " " "" """""



1. Module Name: PLAN ENGAGEMENT! DATA BASE MANAGER,
NUMBER 3.2.1

2. Moduls function: To update the Engagement Plan Data Base.

3. Superviscry mcdules: Plan Engagement
4. Module interface(parameters):

5. Suto:dinate Modules: None

6. Design decision encapsulated:

1. Module Name: ENGAGEMENT DATA, NUMBER 3.2.2

2. Module functicn: This module suppli-s the data needed
by the Plan Engagement module tc
generate the engagement plan.

3. Supervisory modules: Plan Engagement
4. Module ir.tdrface(parameters):

5. Subordinate modules: Launcher and Missile Status
Threat Data

6. Design decision encapsulated:

1. Module Name: THREAT DATA, NUMBER 3.2.2.1

2. Module function: Tc provide the information contained in
the the module to the Engagement Data
mcdule when requested.

3. Supervisory modules: Er.agement Data

4. Mcdule interface(parameters):

5. Subordinate Modules: None

6. Design decision encapsulated:

0112



1. Module Name: PROEABILITY OF ACQUISITION, NUMBER 3.2.3

2. Module function: Tc det rminip v~at the probabilitjy.4s
that-Ir a missile is* fi.reda4- ajiven
target that the mi.ssi.le can acqu-.rae
and hit the target

3. Supervisory modules: Plan Engagement

4. Module 4 ntarf ace (parameters):
5. Sutordinate Modules: Uncertainty Ellipss

6. Desigqn decision encapsulated:

1. Module Name: UNC!BTkINTY ELLIPSE, NUMBER 3.2.3.1

2. Module function: Tc iomp ute the parameters for an.
* chips toof unce-tainty around a

ccntact s positlon.

3. Supervisory modules: Protability of Acquisitiohi

* 4. Module interface (parameters):

5. Subordinate Modules: Track Data Base Manager

6. Desian decision encapsulated:

1. Module Name: DISrLAY, NUMBER 4

2. Module function: To call subordinate modules as necessary
tc generate required displays.

3. Supervi-sory modules: Control

41. Mcdule inter face (para meters):
* ~~5. Subordi-nate Modules: Menu Displa .sieSau ipa

Launcher aalMsieSau ipa
Env ironmental Display
Engagement Display
Ship Paj ameter Display
Tra Dk Dsplay

6. Desiar. deci'sion encapsulated:

113



, . .. . . . . . . . . . .. k-. * . b -',- -. . .

1. Module Name: MENU DISPLIY, NUMBER 4.1

2. Module functicn: Tc access the Menu/State Data Bas = an.d
display -_he requ:red menu when cailed
and keep track of the state of the
program.

3. Supervisory mcdules: Display
4. Module interface(parameters):

5. Subordinate Modules: Menu/State Data Base Mar.ager

6. Design decision encapsulated:

*******************************************************

1. Module Name: LAUNCEER ANE MISSILE STATUS DISPLAY,
NUMBER 4.2

2. Module function: Tc access the Launcher an4 Missi.e
Status Data Base and provide a display
of the information contained in that
data ba s.

3. Supervisory modules: Display

4. Module interface (parameters):

5. Subordinate Modules: Launcher Missile Data Base Manager

6. Design decision encapsulated:

1. Module Name: ENVIRONMENTAL DISPLAY, NUMBER 4.3

2. Module function: To access the ?r.vironme tal D~tq Base
and provide a display oN the inrormanion
ccntaaned in that la-a base.

3. Supervisory mcdules: Display

04. Module interface (parameters):
5. Subordinate Modules: Environmental Data Base Manager
6. Desian decision encapsulated:

114

V. 
. . .



1. Module Name: ENGAGEMENT DISPLAY, NUMBER 4.4

* 2. Module function: To g rapb ical). ydisolaT the flight rpatb
of m ss les that a4e ~o be flown g a:ns:
a set targ-it. Threat data or the ta--gst
will a4so be displa yed. The sngagament
plan will havet t- capability to be
superimposed over the gengral track
display.

3. Supe~viscry modules: Display

4. Module interface (parameters):

5. Sutordinate Modules: Threat Display
Automatic E ngagarnt
Manual Engagement

6. Design decision encapsulated:

1. Module Name: THREAT DISPLAY, NUMBER 4.4.1

2. Module function: To access the Threat Data Base and
provide a dis Play of the information
contained iNt ha,. data bass.

3. Supervisory modules: Display

4. Module interface (parameters):

5. Sutordinate Modules: Threat Data Base Manager

6. Design decision encapsulated:

1. Module Name: AUTCHATIC ENGAGEMENT DISPLAY, NUMBER 4.4.2

2. Module function: Tc graphically display the a ngageme r~t
p lan that was g~ nerat !dtby th9la
Engagement modul~e and storsd in the
Ingagement Plan Data Base.

3. SupervIsory modules: Engagement Display

4. Module interface (parameters):

5. Subordinate Modules: Engagement Plan Data Base Managcr

S 6. Design decision encapsulated:



1. Module Name: GRAEHICS DISPLAY, NUMBER 4.4.2.1
2. Module function: To provide the opera-tor wit.h t.h- capa-
bili t

tc manually input in s-ngagem*-nt plar forattacking a given -target.

3. supervisory mcdules: Automatic Engagement Display
manual Engagement Display

4. Module inter face (pFara meters) :
5. Subordinate Modules: None
6. Design decision encapsulated:

'p

* 1. Nodule Nam: MAPNUAI ESGEMENT DISPLAY , NUMBER 4 .4. .3

2. module function: To provde the operator with the
capability to manually inpu an

'- engagement ?lan for attacking anven target.

3. Supervisory modules: Engagement Display

4. module interface(parameters):

- 5. Subordinate Modules: Graphics Display

6. Design decision encapsulated:

1. Nodule Name: SHIP PARAMETER DISPLAY, NUMBER 4.5

2. Nodule function: To access the SerParaeter Daa Bas
and proide a slay oi he normation
contained in that daa base.

3. Superviscry modules: Display

4. Module interface (paramt ers):

5. Subordinate Modules: Ship Parameter Data Base anager

6. Desiin de.cision encapsulated:

.

116

n nuu1. .nn M odun nnule am.,I e: SHIP. ..-..... ,. PARAETE-DISLAY NUBE 4-.5 , . .. - -. , . ..



1. Module Name: TRACK DISPLAY, NUMBER 4.6

- 2. Modulo function: To access the T-ack Data Base and
-ovide a ccnt:nuous display of all

tracks being maintained In that date
tase.

3. Supervisory modules: Display

4. Mcdule interface(parameters):
5. Subozdinate Medules: Track Data Base Manager

6. Design decision encapsulated:

1

."11

-"

"I, ; '. ',M6',,,,.. - "" ., " ."" "'. X '.,'''" ''''" "" ,.." ''"" ' "" . ' ' . .
I - ll.1,* h . - - _ ", , . , : . . .. . ' . e .. ' . , ... ,.," , .' ; .' .. ....... '__ __

)i l l m m



HSCLCS ADA DESIGN

ADA HSCLCS design from (Ref. 2].

Package Update is

.a~ Laumc her -Missi le-Status i

1=,v Update (Launcher-Missile Status:

inStatus Type)

"d Launch er- Missile- Status

Task Ship-Parameter is

entry Update (Ship-Parameter:
Ship -P ar amet er- Types)

In Ship -Parameter

SEnvironment is

entr Update (Envircnment: in E-nvironment-Type)

End Environment

Task Threat is

2e1tr Update (Threat: in Thrsam-Type)

ja Threat

Tas Update-Track is

enr Add (Track: in Track-Type)
efltry Delete (Track: in Track-Type)

2a, Modify (Track: in- Track-Type)

End Update Track

ga Update

* 118



Package Auto-Engagement is

. ocldu2e A-Engagement (launchar-Missile-Szatus: i..

Status type, Threa: in. Threat Type,

Engagement -Plan: out Engagement-Plan-Type) ;

"Podga Prob-cf-Acquisition (Engagement-Plan: i. out

Engagement-Plan-Type);

jrocgdus Uncertainty-Ellipse (Engagement-Plan: in cu-

Engagement -Plantype) ;

SEnd Auto-Engagement

Packag e anual-Engagement is

jIoc0dure M-Engagement (Launcher-Missile Status: in

Status-Type, Engagement-Plan: out

Engagement -Plan-Type)

End Manual-Engagement

119

, . . .., -. , .. . .. ,..... ... .,.., . . ..f.



Package§ Display is

Task Menu-Display is

entry Access (Menu: out Menu-Type)

En Menu-Display

Task Laucher-M ssile-Status is

ent ~Accss (Launche r-Mssle-Status: ou

St at us- Type)

En Lam c her -M issi le-St atus

Task Environment is

entry Access (Environment: out Environment-Typs)

En d Environment

Tas Ship-Parameter is

entry Access (Ship-Parameter: out

Ship-Parameter- Type)

End Ship-Parameter

s T rac k is

* efltr!y Access (Track: cut Track-Type)

En Track

Tas Threat is

enkr Access (Threat: out Threat-Type)

III Threat
j.~ Engagement-Elan is

ertr Access (Engagement- Plan: out

Engagement-Plan-Type)

Ir Engagement--Plan

12



Package Engage ment-Dis play is

Proced ure Manual- Engage-Dis play (Engagiamrt -rran:

in out Engage mant -Plan -Type, Thrseat:

in out Threat-Type);

P~ocedure Auto-En gage- Displ ay (Engagemen-Uran:

in out Engagement-Plan-Typs, Threat:

in out Threat-Type);

Procedure Graphics (Engagement-Plan: in out

Engagement-Plan -Type)

Eni1 Engagement rlsplay

*End Display

121



* Package Data Base Mlanagers is

jqk.q Launcher Missile Status Manager is

lyp Status Type is

R eco rd

Empty :Boole an
Miss Type: String rang A .. C;

End record

T Task Launcher Missile Status 4s

entry U pdate (Launcher Missile Status :n

Status Type)

entry Access (Launcher Mi s 3-I-= Status

out Status Type)

End Launcher Missile status

End Launcher Missile Status Manager

~ Ship Pa rame ter Matage: i s

Iyye S hip rParameter Type is

Rec or d

Ccurse :Integer range O..359;
Speed :Integer range 0..50;

Position Lat L Lati.t ude;

Pcsitiofl Lcng: Longitude;

End record

Task S hip Parameter is

enr U pdate (Ship Parameter: n Ship

Parameter Type)

entryx Access (Ship Parameter: out Ship

Parameter Type)

En Ship Parameter

ja Ship Parameter Manager

-. 122

lit



- _ . , -_ ._ -p,- . - - % -J1r -,. -N .. ~ a. I*.* -.. . . .. .

Ej;kg Environment Manager is

i1Envircnaent Type 4s

Visibility :Real Range 0..30;

Sea- Sta te :integer range 0..5;

Wind Dir :Integer range 0..359;

wind Spd :Integer range 0-.100;

Temperature :Integer range -100..150

Barometric :Intager range 900..1200

Task Envircrment i
e ntly Update (Environment: an Envircnmsnt

Type)
~ ccss (Evronment: o ut Envircnment

Type)

End Envirorsent

12 Environment [manager

F9ack Threat manager is

lyp Threat Type is

Ship Name :String;

Ship Class :String;

Weapons :String;

ECM Equip :string;

Attack. Plan :String;

E nd record

Task T hrea t is

efltrX Update (Threat: in Threat Type)

E nt T#U~Acess (Threat: out Threat Type)

% End T'Erlat Manager

* 123

LW%



ac track Manager is

_1Te Track is

Record

Type Track : Boolean;

Class Vessel : String;

Eearing : Integer range 0.359;

Range : Integer range C..500;

Position Lat : Latitude;

Ecsition Long : Longitude;

Course : Integer range 0..359;

Speed : Integer range 0..50;

End record

Task Track is
eft Add (Track: in Track Type)

e~tZr Delate (Track: in Track Type)

ent;y Mcdify (Track: in Track Type)

entr Access (Track: out Track Type)

End Track

End Track Manager

_ akS Menu Manager is

TXv Menu is
Record

Undetermined a: this time

End record

Task Menu Cisplay is

entry Access (Menu: out Menu Type)

End Menu Display

End Menu Manager

124



jjatcq~ Engagement Plan manager is

Te Engagement Plan is

Track Desig : String;

Type Plan : Boolean;

Num Missiles : Integer range 0..24;

Sequence : Array;

Miss Type : String range A..C;

End record

Task Engagement Plan is

jntrz Access (Engagement Plan: out Engagement

Plan Type)

End Engagement Plan

Znd Engagement Plan Manager

End Data Base Manager

"2

~125



.. ]

HSCLCS SAPLE SOFTVARE SPECIFICATIONS

Sample sof ware specifications for HSCLCS from

[Ref. 13].

Qpgraticral Dat a~ nR cration ___________

a lie Design Goa!

la. Surface Contact Position 10 20r(min)

(range/bearing)

The use of bearing line in

addition to the 1b requirement

reduces the number of displayel

surface contacts by two per

bearing line.

-Designated Target x

Target Category and Classifi-

cation Displayed.

-Unintended Target(s) x

Target Category and Classifi-

caticn Displayed.

lb. Surface CDntact/Bearing Line 1 3(min)

2. Own Ship Positior X

3. Air Contact Position 1 3(min)

4. 3rd Party Targeting Data Source 2 3(min)

Designation

UCIP shall. resolve target position

based on range and bearing input

from 3rd party or bearing lines

from 3-rd parties cr own ship.

126

%" ** . * . '*]**., -.... *.. '- . .. ..



-Manual Entry of Bearing Lines X

-Manual Entry of Bange and Bearing x

5. Target classification

-Large (default) x

Larger than -a patrol boat.

-Small x

Patrcl bcat or smallqer.

6. Ccntact/Track Course Direction
indicator

Program automatically c ompensates

for own ship's motion.

-Direction Indicator X

-Dead Beckoning (Cwn Ship Only) x

7. Contact/Track Targeting Data Source

-Manual Input x

* - With appropriate data source error;

includes 3rd party.

-Automatic Input

-FArAR I

-SONAR x

-E W/ES~ 1X

-Tarcet Designation System x

8. W ind Parameters (relative)

-Speed

-Actual x
Manual input.

-Dsfault value x

0 -Direction

-Actual X
Manual input.

-Default value x

127



9. Temperature

-Actual X

Manual input.

-Default value X

10. Precipitation

-Yes X

Manual input.

-TNc (default value) X

11. Operator Cues/Lockouts

-Launch Inhibited (lockouts/cual X

All launch inhibits except roll/

pitch cutout.

-Missile Ready (cue)X

-Data Age (cue) X

Target and envircnrmental data.

-missile Launch Status (cue)

-Call/Pail Empty (missils away) X
-Missile Dud Declaraticn X

-New Contact/Track to be Input (cue) X

-Illegal Action (lockout/cue) X

12. Time/Clcck
-ZULU Time X
Start clock: Autcratic entry via

NIDS Interface and/or manual entry.

-Time cn Target X

Manual entry.

-Time cf Launch X

Computation.

4-Ccuntdcwn X

* Includes lime-to-Fire and

Time-tc-Impact.

13. Loadout Status/Missile Variant

I d ant if ica t icu

128

_V_ .. -



-BasqJlins/Block I Tactical Mlissile x

(RGtI-84A)

-Royal Navy Submarine HARPOON X

(EGM-84B)

Rhea re-configured for surface

launch.

-Block IB Tactical missile X

(EGII-8&C)

-Block IC rac-ical mlissile x

(RG,-4D

-Supplemazntal Identi_4fi -_a ti 4-jzX

(manual ent-ry: info from loadout

logbocks of hybrid/nonstandard

s eaker- G c omb inati ons) .

-Training All-Up Rcund (RTM-814A/C/D X

and ENSH)

14. Missile In-Flight Tracks x

15. Up to 180 degree Cff-Axis Launch x

gpr.4nlSlcpn

*1. Reference System

-Tru-3 Target Bear ing/Rel atiwe Target x

Range

Top of display is north.

-NIDS Grid x
-Geographic (latitude & longitude)

2. Planned Missile Flight Path 3

Software to ensure that no flight WPS
path may be selected which could

result in the acgisiticn of own

ship.

3. Search Mode Selection

129

1*6



-On Line Sizing (default) w/lanual X

Override

On Line Sizing shall be automat-

ically selected if RBL or BOL are

not selected.

-Range and Bearing Launch (RBL) X

RBL pattern size shall be a

function of total flight pa-h

(range ":raveled tc target)

-Bearing Only Launch (BOL) X

4. Selectable Search Pattern Expansion

(0 - 360 degrees) X

For EGM-84D missile oly, applies

to EEL mode and Cr-Line-Sizing

(OLS) which results in an RBL

search pattern.

-Normal Center Expansion X

For EGM-84 A/BGM-84E/fRM -84C

missiles; default for RGM-84D

missile.

5. Enable and Destruct Ranges BOL X

Default values or manual entry

(ranges not supplied over NTDS

interface).

6. High Altitude Hold

RGH-84D only.

-Do Entry; Default X

The High Altitude Hold default

range not to interfere with search

initiation and nct to exceed 10n;

i.e., High Altitude Hold range is

set tc the minimus of 10nm or range

to search initiation.

130

LI

'"''i," -' -'q" '"." .' *. . . . . . . .', "", S . * '" "" . . ' "" " " . . " " " ". . . " ". .



.*.*.*... .--.- .. .. .. -7777 .7-777.' .-

-Manual Entry

The selected High Altitude Hold

range must be less than the range
tc search initiation.

7. Presearch Fly-Out

-Sea Skim (RGM-84D only) X

Default mode - Presearch Fly-Out is

set to sea skim altitude following

the High Altitude Hold.

-Manual Entry x

Presearch Fly-Out at normal HARPOON

run-in altitude as used in current

HSCLCS.

8. Terminal Attack Mcde (RGM-84D only)
-Sea Skim (default) x

-P cp- u v

Default override by manual sel=c-

tion of pop-up, "SMALL TARGET"

designation by NIDS, or when

"SMALL TARGET" is entered manually.

9. Missile Assignment for Engagement

, Planning

Manual entry.

10. Multi-Missile Engagement cf 4 8

Designated Target.

Baseline: Up to 4 missiles from a

single launcher. (Note: Single

S.'- launcber includes TARTAR and

ASROC). Design Goal: Up to 8
missiles from 2 CML's.

-Salvo Missiles Against One Target x

For Simultaneous Arrival (STOT
Salvc).

131



Operator-planned engagemuent.

-Salvo Against Up o Four largetsX

(single airpcint) From One Laiincher

For Simultaneous Arrival (STOT

Salvc).

Same aimpoint and a di-ffarent RBL

search expansion, for each RGM-8L4D

missile in order to distribute

salvoed missiles among the targats

in a formation.

-Ripple Salvo as per current HSCLCS X

CML Configuration.

-Quick React ion/Preprogr amed STOT x

Salve.

Modi fied HSCLCS automatically will

calculate and enter a different

waypoint for each RGM-8L4D missiles

in a quick reacticn salvo for

simultaneous time-on-target (STOT).

11. Background data and sector data x

request.

Usatle with NTDS interface only.

ENGAGEMlENT DISPLAYS

1. Contact/Track Uncertainity Ellipse

-Designated Surface Target X

-Unintended Targets X

It selected by operator.

2. Predicted Time-on-Target x

3. Probability of Acquisition

Numerical value.

-Des-Ignated Targets X

*-Unintended Targets x

132



If selected by oprator.

4. Seeker Search Pattern Outline X

Fcr selected search mode.

5. Missile r"ight Path X

For all selected sissiles.

* 6. Booster Drop Zone X

7. Missile Power Application Warning X

OTHER

1. Test/Maintenance

-issils BIT Results

-Go/No-Go Indication X

-Failure Status Ccde X
-HSCLCE BIT Results

-Go/Nc-Go Indication X

-Failure Status Ccde X

2. Training node

Inherent capability provided by

system design. Design to utilize

data frcm NTDS and/or external

training support devices via an RS

232 serial interface.

-Ccntact/Track Location (actual or

simulated) .

-Cff Eoard Source/NTDS X

-Own Ship Sensors/NTDS X

-Manual Input X

-Own Ship Position (actual or simul- X

ated).

-Training Scenario Parameters

-Environmental Ccrditions X

-Operational Planning Selections X

133

,"2., ,_:;.".-;. . .. ..-. ,". .. -.. .. . . . .. . . . •. . . . . . ...... . . ..... .
"S" " - " ." *.*** " ' -- '-l --.I 

,
- "- "- ' " - " .' . . " . ..- . " ,., ' : . . ", . . .'.- ..'. "' .' ".:.' " .',,'-*. .



3. Data Extract

Design to be compatible with an RS

232 serial interfacq to provide for

data storage/display in off-line

devics (e.q., 'Cape cassette recor-

der).

-Target/Targeting Data x

-Missile Initialization Data x

-BIT Results x

4. Major Display Features

-Variable Range Scale X

16K-, 32K-, 64K-, 128K-, 192K-, or

256K-yard radius. The 256K-yard is

the default scale.

-Offset X

-Zoom X

8K-, 16K- or 32K-yard radius.

-Special Symbols X

-Cursor, with Bearing/Range rzadout X

Manually controlled.

13



AP PENDIX F

HSCLCS SYSTIN DIAGRAMS

These fcuir diagrams illustrate thie currer.t c:)nfigu~ation

of the HSCLCS and the new proposed ona.

'pOp



.9 X_ _ _ a_ -a3-

Id 1

I It

mi ~iL

II

*Figure P. 1 Hardware Component Overview of HARPOON1 Weapon System.

136



.. . - . - . . - . - . *.. .... .. .. . -. . - . - ... ' -

7. T 7"7

"IBUING 'IDICA1tA

SYSTEM STATUS

_ _

IDATA ENTRY WO41a

I I

-921

TIN
I ggl'l --~I U "" **..--- N N~( 211

I . WET 111

E*~l

VN aft- NO:V n

WOOTH: IsMR

Figure P.2 Existing Cannister Launch HSCLCS ICIP.

137

i-



I mi

'.4o

-C. 
_
CI -

x.i~
.. ~0

I l EmO 0001

I I
IC 0

o C.) cn' z

*0 0 0

L 138

*.? ~.,'' * -.- ~. ~*. 2 * 2 - *. *.*0

* ~ ~ C (n. L. <. .CL*'* ** ** '



II

I 0
- . I
* ~ I

I
I .<-I- 0,-m < '

"I 00 I" I Ii

"I p .*ih I -t.IJ :

,-I - <

mi--0 
-

00

* .

< 1in 00

w <

I
'II

U1 X

a.'

'I igure 7,.1 Sample Display frca Proposed JCIP.

-v

139 i
Q <

W .- - ---- -..
--. -- "-.

2J

JW

U 4* *



LIST OP REFERENCES

*1. !atoney, Rand all and Sentman, Lawrence, I n,7 qr= te
Dasin s .0- thle Harpoon b - .0arC

PostgraIi t%5c o on,_6ray, Californ.ia, tcme

* 2. Oliv4 er Daniel and Olsen, Kevin, A j~~ hodoloci
f~ Em~edded Wepn Svs--jms thsKlrcn

AN/SWG-1A, adte~ NT Ve5g!15,&~l
montersy,- California, June 1983

3. Ross, Douglas 1., Goodcnough, John B., and Irvine, C.
A., ~ ~ ~ ~ ~ P "otaeEgne.n: rosses, Principles: and

Goals",1 --j la a , (M ay 1975), pp. 54-55

4. Boebmf Barry W., "So-ftware an d Its Impact:1 A
Quantitative Assessment",1 Data ma t.on Mal zfe Vol.
19, 5(May 1973)

5. Pressman, Rcger S. So wr En qin e e r In ct
Pr7acticner's Arrroach, Mcgraw-HJ217 BooXc Company, 19e2-

6. rcurdan, E. and Constantine, L. L., Structured Dezzgn,
-. You:dan Press, 1978

*7. D,: Marco, Tcm, Structured Analysis ~aa Ss--em
Si-ecification, rritceHa ook Compay t fpb

8. Booch, Grady, Soft ware Enginearigg with A~j The
BejMinCummingsWBT:.ng Co mpany, .~7 Inc ,3

9. Shooman, Martin R., Software Enaineelina, McoGraw-Hill
Book Company, 1983

10. Belady, L. A. and Lehman, M. M., The Qgk!~eistic
of large Systems, MIT Press, 1979, pp. T05-1

11. Parnas, David L., "Or. tha Critse-ia To Be Used in
Decemsosing Systems i.nto Moa as" Ccmmunicaticns of
thej ACM, Vol. 15, 12(December 1972f _

12. Eensc, Tm, "Object Oriented Programming", SIGPLAN
NotIces, 17, 9(September 1982k, pp. 51-57

13. Esclimn, Judd, Pzelim;ary Des n fo- H SCLC S
ai2i , aster's TnesT a osagr

bhhol NoNterey, Califcrn4-a7 becember 1983

140
1%

Il.



BIBLIOGRAPHY

Artzer, S.P. and Neirer R.. Sotre n qlneertnq: A
Primer for the Prolec Uraqe r, ffg'f'~ TF'T-----7e VaT
r~~al' 7coIF-fctry- Jf ornia, June i 981

Bauer, F. Le oiiti-aEgineerina, AD, ldvalnld gourle,Srner-Verla grW

*Boehm, Barry V. SoftwareA arrA lcornouics,
Prntss-Hall, Inc, 98

Gore Marvin and Stubbs j79hn, Elements of Ustems Anal.Isis,
iM. 6. Brcwr Company Publishers7-T973 --

Katzan, Harry, Jr., j1.stems resign an DocumentatiLon, Vanr
Ncstrand Reinhod Compan-19756--

Laden H. N. and Gildersleevs, T. R., S srem Dssi~qr for
* Coupugjftj AAppi-cations, John Wiley and Sons,-

Machol, Rcbert E. Sy ' s nierng Handbook, McGraw-HIll
Book Company, 19;~-Ste a±~r

Mar~i, Jms Des qn of Real rime Compute Ssm,
Prent 3s s- Hall, mnc, IT -O

* .Martin, James and McClure, Ca rma , Software Maintsnance,
Prenta.ss-Hall, Inc., 1983

* Myers, G., Composij =2ctured Design, Van Nostrand, 1978

Sommqarville~ I.r Sotwan g~n99ri.ng, Addison-Wesley

Steyens W Myers, G. 4nd Const~ tineiL, "tStruqtured

Toau, Julius T. , Software En~l~~,Aaei rs,17

141



'4

INITIAL DISTRIBUTION LIST

No. Copies

1. library, Code 0142 2
Naval ostgraduate SchoolMonterey, California 93943

2. Department Chairsan, Code 52
Department off Computer Science
Naval Postgraduate School
Monterey, Califcrnia 93943

3. Department Chairman, Code 541
Department of Administrative Sciences
Naval Postgraduate School
Montery, California 93943

4. Defense Techpical Information Canter 2
Cameron tatiqn
Alexandria, Virginia 22314

5. TCDR Ja as 1. Ransbotham, Jr., USN
597 D ch elson Rd.
Monterey, California 93940

6. LCDR Donald F. Mocrehead, Jr., USN
4716 Dermott St.
Chesapeake, Virginia 23320

7. Charles Arnold
NUSC
New London, CT 06320

8. CDR James Will4aison, USN
Joint Cruise Missile Project Office, JCM-52
Bldq. NCI
2511 Jefferson Davis HighwayWashington, D.C. 20363

9. Naval Postgraduate School
Computer Technologies Curricular Office
Code 37
Monterey, California 93943

10. LCDR Ronald Modes, USN 4
VAQ 129
NAS Whidbey Islald
Oak Harbor, Washington 98278

11. ICDR Rcnald Kurth, USN
Department cf Ccmputer Sciencs
Naval Postgraouate School
Monterey, California 93943

12. NSISES
Code 4613 (Mr. Pa 1Go noni
Port Hueneme, Californa 930 43

142

III

-Oo. . o . .* . ..* '-Y : C W - *.



13. Mir. Frsd S. Gais
Dizectcr - HARPOCN Ship Intagzation
McDonnel~l Doug las Astronautics Company
St. Lcis Divi sicn
P.O. Box 516
St. Louis, fisscuri 63166

14. Naval Sa Stems Command
Decarment- f betfavy

ATTN: Mr. Las Minin
NAVSEA Code SEA-62WB
Washington, D.C. 20362

r1. 143

% . . . . .



~ ciiv -t'*''

S d, L 
.7 s .''. S . , L " .:

• 
' ttfr 9

.. .. .. ':.i. 
, 

- ,.

lb .. ,. .. :,c,/..z,,L; ,r; .. .r,.1"i "' i

". %&"aaa' A" - ' " " 
."-"-

.. kA....fl ... , 
t'.d L. ': '-,

...
[...... ", 

- ..

,:-, j 4.. ..- , 't.4 ... <- ,.,.t

* " * 4 ",. 'If" "" A." " ?

'1... .) "" ' * k't .. / .... 9 ". 9A

S 'A . ... 7 4 " ' "" ', * " ,

,I . .,- Af " " ,, ..

v.t 49 . 9, 
, ."

4 I "

S . ,. " ,- ... ... '.1 "' .- i :-

a 
A 

, -
T

" C -" ... ... ....... £

,',7 • .. ",. :. ..- ... .. .... .. .

'- * .. • 0 ; . i:

.
/ .

, ... -

.... ... :. ./. ,- . ..

,,, . ..- -:, . .. , ; . ,, , .

- . , 
* 1 •

0 i : -. , , 7 T.. ,,9 ~ .- r

t 1'. t : % , . 4

i , -...-

,/i I


